
pCT Bergen Meeting

Gitlab best-practice

Matthias Richter

Jan 12 2017

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 1 / 24

Outline

Part 1: A short introduction

Part 2: Hands on

Very much my personal view and experience. There is a lot of information

available and we have to create our strategy and build our knowledge.

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 2 / 24

Policies

Keep track of your development

make frequent commits

write meaningful commit and log messages

use branches to structure your work, e.g. different features,

prototyping, ...

Publish early, publish often

Make code available to your colleagues

Participate in and receive code reviews

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 3 / 24

Git: General Remarks

Versioning system, strong focus on distributed repositories

Git separates a contribution to a project into three stages

1 git add: add new files to project or add changed files to be

committed

2 git commit: check in changes to local working clone

3 git push: push status of local clone to a remote repository

... and adds a new concept

git pull: pull updates from (any) remote repository

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 4 / 24

Gitlab - a smart interface to Git

Gitlab is an interface to git

not only repository hosting, but allows efficient collaborative work

Easy code sharing and discussions

Code review

Documentation

Bug and issue tracking

Planning

Distributed maintaining, every developer can take over tasks from the

main maintainers

... and a lot more

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 5 / 24

Working with Gitlab

There are two different roles:

User role: A user wants to download the code, compile it and use it.

Developer role: A developer contributes to the development.

Often one starts as a user and moves to developer role later

Gitlab supports multiple repository copies

git supports/implements distributed repositories copies

git itself does not even make an assumption about a master

repository

It is however good to have such a master repository and dedicated

strategy how to contribute to it.

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 6 / 24

User space in Gitlab/Github

Every user has his/her own space at the server side, in addition there

can be groups with dedicated group space

A project is created in a user or group space

This is usually the master repository

Repositories can be forked, this creates a repository copy inside Gitlab

with dedicated access rights

The developer fork is the main

feature in Gitlabs/Githubs

concept of distributed

development, code sharing and

code review.

The repository copies are synchro-

nized via merge requests

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 7 / 24

The pCT group at UiB Gitlab
https://gitlab.uib.no/pct

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 8 / 24

https://gitlab.uib.no/pct

Projects in the Gitlab pct group
Initial projects:

Start with a project per work package (WPn)

There will be significant overlap between work packages, we might

want to consider renaming and a different structure early next year

e.g. WP1 and WP7 call for a common repository (common package

dependencies, data formats)

External projects:

External projects can either be taken directly from a remote

repository, or can be imported as a separate project in our Gitlab

space

“Lyon”-code imported to

https://gitlab.uib.no/pct/mlpTracking (name might change)

Work-flow proposal on the wiki: https://wiki.uib.no/pct/

index.php/Documentation#Importing_an_external_package

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 9 / 24

https://gitlab.uib.no/pct/mlpTracking
https://wiki.uib.no/pct/index.php/Documentation#Importing_an_external_package
https://wiki.uib.no/pct/index.php/Documentation#Importing_an_external_package

Branches in the main repository

Suggestion:

production: the latest production code, in this branch we have

release tags

master: the latest stable release

dev: the development branch

In addition to those main branches there can be feature branches where

development happens detached from the main branches.

A feature branch is based on the dev branch and has a limited lifetime.

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 10 / 24

Tutorial

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 11 / 24

Gitlab group page
https://gitlab.uib.no/pct

Note:

Log in with UiB account and request access

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 12 / 24

https://gitlab.uib.no/pct

Cloning a project

https://gitlab.uib.no/pct/tutorial

git clone https://user@gitlab.uib.no/pct/tutorial.git

Note:

make sure to switch the link to https before cloning

currently investigating cloning via ssh

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 13 / 24

https://gitlab.uib.no/pct/tutorial

Using the cloned project
Some commands to investigate the project:

cd tutorial

git branch

git branch -a # to show all branches

git remote -v # shows the remote repository

Example output:
richter@workhorse:~/src/pCT$ cd tutorial

richter@workhorse:~/src/pCT/tutorial$ git branch

* master

richter@workhorse:~/src/pCT/tutorial$ git branch -a

* master

remotes/origin/HEAD -> origin/master

remotes/origin/dev

remotes/origin/master

richter@workhorse:~/src/pCT/tutorial$ git remote -v

origin https://gitlab.uib.no/pct/tutorial.git (fetch)

origin https://gitlab.uib.no/pct/tutorial.git (push)

Note:

Git configures the remote upstream repository, the original cloned

repository gets identifier origin

Multiple upstream repositories are possible

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 14 / 24

Found a bug - create an issue

https://gitlab.uib.no/pct/tutorial/issues → New Issue

Note:

Gitlab issues can also be used for feature requests and ideas

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 15 / 24

https://gitlab.uib.no/pct/tutorial/issues

Becoming a developer (1)

Switching roles from user to developer involves a couple of changes:

Development involves two “git”-stages:

1 Local changes to the work clone: git add/commit

2 Publish to server: git push

Rule: always use branch dev for development or an appropriate

feature branch: git checkout dev

Example:
git checkout dev # a new branch can be created with git checkout -b branchname

do some modifications to existing file or create new file

echo "this is ${USER}’s new feature" > feature_${USER}.txt

add to the index for committing

git add feature_${USER}.txt

commit

git commit -m "A new feature by ${USER}"

Note: everything is local until now

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 16 / 24

Becoming a developer (2) - Making a fork

A repository fork is a copy of the original repository within Gitlab

Why forks?

a fork is the users workspace in Gitlab (it’s not a local clone)

user has full access to a fork (other than the master repository)

fork makes development public within the team and makes code

sharing and review easy

fork allows user adjusted code

Looks exactly like master repository, but you have full access and control

Klick ”Fork”-button and choose where

to fork the project to, in most cases your

user space.

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 17 / 24

Becoming a developer (3) - Adjusting work clone

Your developer space at Gitlab (adjust user)
https://gitlab.uib.no/user

If your clone was done from the main repository → set upstream

repository link to fork (adjust user)
git remote set-url origin https://user@gitlab.uib.no/user/tutorial.git

git remote update

Or make a clone directly from the fork
git clone https://user@gitlab.uib.no/user/tutorial.git

Make a contribution by pushing code updates to fork
git push origin dev

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 18 / 24

Updating the local clone - rebase

rebase is a synchronization of branches

⇒

Sequence of commits since branching point is “replayed” on top of the base branch.

This results in a sequence of new commits.

Linear commit history, no merge commits

Example: Synchronize sequence of development with main repository

pull latest state of branch dev from main repository:
git fetch https://gitlab.uib.no/pct/tutorial.git dev

rebase branch dev of local clone to the remote branch
git rebase FETCH_HEAD dev

See also https://wiki.uib.no/pct/index.php/Documentation#Preparation

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 19 / 24

https://wiki.uib.no/pct/index.php/Documentation#Preparation

Rebase: Resolving merge conflicts (1)
A merge conflict arises from conflicting changes from different lines of

development, e.g. changes in the same file at the same position.

Git produces merged version with some special notation

rebase is stopped, manual intervention is needed.

Example:
richter@workhorse:tutorial$ git diff

diff --cc README.md

index 2fdc258,b99ee05..0000000

--- a/README.md

+++ b/README.md

@@@ -1,4 -1,5 +1,9 @@@

This is a tutorial project

++<<<<<<< 2005439cf1c7250d17dc85281b79b69f56487335

+THIS NEEDS SOME MORE INFORMATION

++=======

+ some changes by Matthias

+

++>>>>>>> Some changes by Matthias

Changed lines are indicated by two columns with +/-, one column for each versions

starts with what has changed in the base version and your changes follow after the

separator =======

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 20 / 24

Rebase: Resolving merge conflicts (2)

Looking at changes: the --ours and --theirs options

diff wrt your version

richter@workhorse:tutorial$ git diff --theirs

* Unmerged path README.md

diff --git a/README.md b/README.md

...

+<<<<<<< 2005439cf1c7250d17dc85281b79b69f56487335

+THIS NEEDS SOME MORE INFORMATION

+=======

some changes by Matthias

+>>>>>>> Some changes by Matthias

diff wrt base version
richter@workhorse:tutorial$ git diff --ours

* Unmerged path README.md

diff --git a/README.md b/README.md

...

+<<<<<<< 2005439cf1c7250d17dc85281b79b69f56487335

THIS NEEDS SOME MORE INFORMATION

+=======

+some changes by Matthias

+

+>>>>>>> Some changes by Matthias

Note: This is a counter-intuitive feature of git, rebase is done from the perspective of

the base branch, not the developer branch which is rebased. As a consequence,

--ours refers to the version in the base branch and --theirs to the developer

version (your version).

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 21 / 24

Rebase: Resolving merge conflicts (3)
Options to resolve the conflict:

1 Edit the file
2 Take your version

git checkout --theirs -- filename

3 Discard your version
git checkout --ours -- filename

Next steps:

indicate to git that you have done the work by adding the file to the

index for the commit. Note: don’t use git commit.
git add filename

continue the rebase process (this does the commit)
git rebase --continue

Emergency:

you can always abort and restore the original state
git rebase --abort

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 22 / 24

Create a merge request
Push the updated version to the fork

since the commit line has been changed, the local and remote

branches are out of sync, option -f (force) has to be used
git push -f origin dev

Merge request is now created on the gitlab web interface of your fork
1 Go to your gitlab user space at https://gitlab.uib.no/user (replace user

appropriately).

2 Find the project fork, e.g. in the list of projects associated with you from the

upper main menu.

3 In the line with the many columns regarding the repository, click on the

”+”-symbol on the right hand side and choose ”New merge request”

4 Select project and branch for both source and target, and click ”Compare branches

and continue”. Remember: in almost all cases you have to merge to branch dev or

other feature branch, only in very rare cases to branch master

5 Review the list of commits in this merge request, give it a descriptive title and

description, pick an assignee

6 Submit the merge request
mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 23 / 24

Additional discussion during the session

Some notes from the discussion

Guidelines for using Gitlab (“this is how we use our gitlab space”)

There is already some information in the wiki, more work needed to

complete the guidelines

https://wiki.uib.no/pct/index.php/Documentation#Software_repository

https://wiki.uib.no/pct/index.php/Gitlab_best_practice

Handling of documentation: MS Word widely used

Proposal: doc files as binary files, use versioning in the doc files,

consider separate project which is not to be forked

Handling of binary files, in particular large binary files, check what is

needed

mail@matthias-richter.com 2017-01-12 pCT Bergen - Gitlab Jan 12 2017 24 / 24

https://wiki.uib.no/pct/index.php/Documentation#Software_repository
https://wiki.uib.no/pct/index.php/Gitlab_best_practice

