pCT Data Transfer Protocol (pDTP)

Ola S. Grottvik

v1.1 - September 11, 2019

1 Concept

To reliably transmit data over UDP, it might be required to add a layer on top to control the offload from
the pRU. This document presents a solution to the problem, the pCT Data Transfer Protocol (pDTP). The
protocol enables the offload to operate in either pull, semi-push or full-push mode. The client can request
the server (the pRU), to transmit a single packet of a desired size (PULL). Or the client can request a stream
of certain number of packets of a desired size (SEMI-PUSH). Full-push mode, is a mode were there are no
control of the stream, the server will continuously push available data to the client (FULL-PUSH).

In PULL mode, the client can either instruct the server to wait for an acknowledge or not, and also tell the
server to retransmit the last packet. In SEMI-PUSH mode no acknowledges are performed before the last
packet - the end-of-stream (EOS) packet. In SEMI-PUSH mode there are no re-transmit possibilities and
if packets are lost, they are lost forever. In either mode, the server will always try to transmit the number
of pRU words requested, but if no more data is available will only transmit what is possible. For PULL, if
no data at all is available, a special error packet is sent. For SEMI-PUSH, an end-of-stream (EOS) will be
transmitted. For FULL-PUSH, nothing is transmitted if no data is available, and the server will stay in the
mode until it is aborted.

The maximum theoretical pDTP payload is calculated by 65, 535(2'¢—1)—20(1 Pv4)—8(UDP)—8(pDTPSH)
65,499 octets which translates to no more than 4093 pRU words. The calculation would be the same if pDTP
Server Header were to be extended to 16 octets, so there are possibilitites to add more fields for clarity. How-
ever, because of diminishing returns in efficiency gain, there seem to be a practical limit of 9000 bytes in the
payload. This yields an efficiency of 99% and is the maximum size of a so-called jumbo frame. Also, to make
the pDTP header format as clean as possible, a limit of 255 pRU words (4080 bytes) seems to be a sound
limit.

pDTP Client Request
pDTP Client pDTP Server
pDTP Server Data

Two header formats are defined, one for the client and one for server. This is done as the requirements for
the two are quite different; the client are just sending commands and the server are transmitting data as well
as acknowledgements.

2 pDTP Client Header Format

Offsets | Octet 0 ‘ 1 ‘ 2 ‘ 3

Octet | Bit [0]1]2] 3 [4]5]6]7|8]0]10 1112131415 |16 17181020 |21] 22|23 | 24] 2526 |27 28 [20]30] 31
0 0 TPv4 (20 Octets?)
20 160 UDP (8 Octets)
28 224 | DTP Client Opcode ‘ Flags ‘ DTP Special Commands ‘ Requested DTP Packet Size - in pRU words

2.1 pDTP Client Opcodes

Opcode Name Opcode Short Description Long Description

CLIENT_RQR 0x0 Client Read Request Client request the server to transmit a packet of a certain amount of pRU words

CLIENT RQT 0x1 Client Test Request Client request the server to transmit a test packet of a certain amount of pRU words
CLIENT _RQS 0x2 Client Stream Request Client request the server to transmit a certain number of packets of a certain amount of pRU words
CLIENT _RQFS 0x3 Client Full-Stream Request Client requests the server to continuously transmit packets as data gets available

CLIENT _ERROR 0x4 Client Error Timeout while waiting for packet, or some other error
CLIENT _ACK 0x5 Client Acknowledge Acknowledge to the server that the last packet were obtained
CLIENT _ABRT 0x6 Client Abort Instructs the server to abort the current operation, e.g. CLIENT _RQFS
CLIENT _GS 0x7 Client Get Status Ask the server to transmits its buffer status, firmware information, and absolute clock
CLIENT _THROTTLE 0x8 Client Throttle Ask the server to throttle the output stream, by waiting for a certain number of clk cycles between each stream packet

2.2 pDTP Client Special Commands

Opcode / Bit 1 5 I [I 7 8]0 [1011121314 [15] 16 [17 18 |10 [20] 21 [22 [23] 24 [25] 26 | 27 [28] 20 [30 | 31
CLIENT_RQR | NO_ACK MIN_RQ | MAXIMIZE | I Y I O I O O RQ_PACKET_SIZE
CLIENT_RQT | NO_ACK RQ_PACKET_SIZE
CLIENT_RQS MIN_RQ MAXIMIZE NO_WAIT RQ_STREAM_SIZE RQ_PACKET_SIZE
CLIENT_RQSFS MIN_RQ MAXIMIZE NO_WAIT RQ_PACKET_SIZE
CLIENT_ERROR UNINTERPRETABLE | TIMEOUT | RESEND_PACKET

CLIENT _ACK

CLIENT _ABRT

CLIENT _GS

CIENT _THROTTLE I

WAIT _CYCLES

3

NO ACK - Server will not wait for an acknowledge from client

RQ_ PACKET SIZE - The number of pRU words requested in each packet - max 255 pRU words, i.e.
~ 4 kB

RQ_STREAM SIZE - Number of packets to transmit without listening for acknowledge - max 2161 =
65.535 packets

MIN RQ - Will not send a packet if buffer has less than RQ PACKET SIZE. Pull: Server will send
an ERROR. Semi push: Server will transmit an EOS. Full push: Server will wait until buffer is filled
with required amount.

MAXIMIZXE - Maximize the number of pRU words transmitted, based on the data available. Can be
used together with MIN RQ.

NO_WAIT - Server will not wait for buffer to be filled with data if buffer is empty or is filled with less
than MIN _RQ. Result is EOS in both RQS and RQFS.

UNINTERPRETABLE - The received packet was not possible to understand

TIMEOUT - The client timed out while waiting for something

RESEND PACKET - Ask the server to resend the last packet - only available after CLIENT RQR
WAIT CYCLES - The number of clock cycles between each stream packet transmitted from the server.

pDTP Server Header Format

Offsets | Octet 0 I 1 I 2 I 3

Octet [Bit [OJT1[2] 3 T[4[5[6[7[8[9[10[11[I12]13[14[15[16[17[18[19[20[21[22[23[24[25[26[27[28[29[30] 31
0 0 IPv4 (20 Octets?)
20 160 UDP (8 Octets)
28 224 | DTP Server Opcode ‘ FLAGS ‘ DTP Packet ID / Buffer Fill Count ‘ Actual DTP Packet Size / Version Number
32 256 ABS_TIME (System Clock Cycles)
36 288 Payload (0 - 255 pRU words)

3.1

pDTP Server Opcodes

Opcode Name Opcode Short Description Long Description
SERVER_WRITE 0x0 Server Write Packet Server sends a packet
SERVER STREAM 0x1 Server Stream Packet A part of a stream of packets
SERVER _ERROR 0x2 Server Error Timeout while waiting for ack, uninterpretable received packet or no data available
SERVER_EOS 0x3 Server End-Of-Stream Server is finished transmitting all possible packets
SERVER_ STATUS 0x4 Server Status Server Status

3.2 pDTP Special Commands

Opcode / Bit 4 5 6 7 8TO[T0]11 [12 1314 [1516 [17 [18] 1920 [21[22[23[24[25][26]27]28]29]30]3l
SERVER_WRITE FULL ATMOST _FULL PACKET_ID AC_PACKET_SIZE
SERVER_STREAM FULL ATMOST _FULL PACKET _ID AC_PACKET _SIZE
SERVER_ERROR | INVALID_RQ MIN_RQ EMPTY | TIMEOUT BUFFER_FILL_COUNT

SERVER_EOS MIN_RQ BUFFER_FILL_COUNT
SERVER_STATUS FULL ATMOST_FULL | EMPTY | BUFFER_FILL_COUNT VERSION_NUMBER

e PACKET ID - Incremented counter of all transmitted packets

e FULL - The offload data buffer is full

e ALMOST_FULL - The offload data buffer has less than 20% space left

e EMPTY - The offload data buffer is empty

e TIMEOUT - Timeout while waiting for something or uninterpretable

e NO_ DATA - No data was available on server when receiving request

e BUFFER FILL COUNT - Amount of pRU words stored in offload buffer
e INVALID RQ - Client asked about something unknown to the server

e VERSION NUMBER - Current version of pDTP protocol

3.3 SERVER STATUS

Offsets | Octet 0 I 1 I 2 I 3
Octet | Bit [O[T1[2] 3 [4] 5 [6 [7[8[9[10[11[12[13]14[15 161718192021 [22[23 [24[25[26]27[28]29[30]3l
0 0 IPv4 (20 Octets)
20 160 UDP (8 Octets)
28 224 | SERVER_STATUS | FULL | ALMOST_FULL | EMPTY | | BUFFER_FILL_COUNT I VERSION_NUMBER
32 256 ABS_TIME (System Clock Cycles)
36 288 BUILD_DATE (YYMMDDHH)
40 320 GIT_HASH

4 Firmware

4.1 1 Gb/s - SGMII - Standard Ethernet

This approach are using a standard Ethernet cable that are connected to an off-chip SGMII PHY chip until
reaching the FPGA. A PCS/PMA Xilinx IP are converting SGMII to GMII before reaching the open source

MAC and the rest of the logic. All stream are 8-bit per clock cycle. Clocks are 125 MHz, as 125M*8 = 1G.

“““

i

i

i

i

i

i

i

i

i

Ll AXIS AXIS Ethemnet

' RX

1

1

1

1

PHY &L » P - »

(Off-chip) o« > PCS/IPMA "’ MAC UDP Complete « o pDTP Core
v 2 SGMIl LeMIE D L AXIS UDP

i H H

i

i

i TX

: AXIS

0 AXIS Ethemnet

i

i

i

i UDF Complete TOP 8 bit

I R

i

" pDTP TOP

4.2 10 Gb/s - XGMII - SFP+ /QSFP-+

This approach are using a SFP+/QSFP+ cables, i.e. each QSFP+ connector holds 4x10Gb/s links. The
links are connected to a Multigigabit Transceiver(MGT) on the FPGA, which are then connected to an open
source PHY and the rest of the logic. All streams are 64-bit per clock cycle. Clocks are 156.25 MHz, as
156.25%64 = 10G.

...

..

AXIS AXIS Ethemnet
RX _|_>
MGT o« > PHY « : MAC UDP Complete <: pDTP Core
SERDES IF XM EAXIS ubpP
(—l_ TX
AXIS
AXIS Ethemet

UDF Complete TOP 64 bit

pDTP TOP

5 pDTP Core

The pDTP Core module has the possibility of looping back UDP packets. This decision is done by the Port
Decision Logic. A loopback packet will be transmitted via the AXIS FIFO into the arbiter mux.

pDTP Client Packets will be interpreted by pDTP RX module. This module will then transmit a client
record to the pDTP TX module, which will transmit pDTP Server Packets based on the client orders.

AXIS Data Buffer 1 Client Record

- Opcode

-MNo ack

- Uninterpretable
- Timeout

pDTP TX - Reszend packet
- RQ Packet Size
- RQ Stream Size

YyYYYXY

pDTP RX

Client Record

Port Decision Logic AXIS UDP AXIS UDP UDP Arbiter Mux

AXIS UDP AXIS UDP

AXIS FIFO

Y
Y

Ports:

e 29070: Loopback Port
e 30000: pDTP Port

6 TX FSM and Flow

HIAVIH LS Wl

=> IaJNG puasal pie
Ioid e L

HOHHT 3ud

HOHHT vHlL

0 == Jang puasaipie;
1353 L

0 == lapng " puasaipie;
JCHINDT WY3dLS,

S4od| sioy

MIAYIH SNLVLS Vel

Lnd"SNLY1S vuL

6.1 IDLE Flow

N

U IHd SIElS 18N

aN3S3H e

4BUNa piea

SANISIH O

N

oN'| ¥344ng QrvANI1aS

HSnd TINd
apow 1ag

[2-1e2-1-F

TOY INOD WYIHLS 8lels JxaN|

J2Ung ON3S3Y 1958

13STHTLIVM Blels IxeN

HOYYI ™I 8lEls IXaN

I

QI"1IHOVd Wawanu
J3Unag AN3S3Y 1853y

HSNd IN3S
apow 188

&0y =1unod Jaung
2 OH NIN

sIBsIbaY Isanbay 11D 195

L0H WEID 0D

OY NIW IS

AldN3 B8

DY QITYANI 19§

6.2 PRE_WR Flow
PRE_WR is similar to the following states: PRE_ST, PRE _ERROR, PRE_EOS, PRE STATUS. How-

ever, these other states does not have a check for resend functionality. Also, next state can be determined
from FSM graph.

start

No \\\\fiifND?
Yes
Buffer Count = RQ?
Set packet size to buffer count Set packet size fo RQ Set packet size to buffer count
¥

Set header_valid = high
Set header

header_ready?

Nexi state
TRA_WR_HEADER

end

6.3 TRA WR_HEADER Flow

TRA WR_HEADER is similar to the following states: TRA ST HEADER, TRA ERROR, TRA EOS,
TRA STATUS HEADER. Next state can be determined from FSM graph.

start

l

Set t<_busy_header
Set stream valid

!

Set output data to header @ byte position

Mo es

Output bufier ready?

l

Subtract byte_count with data_width/8

Mo fes

Keep transmitting all bytes
Indicate last byte to output buffer P 9 Y

|

Next state TRA_WR_PKT

end

6.4 TRA WR_PKT Flow

TRA WR_PKT is similar to the following states: TRA ST PKT, TRA STATUS PKT

are missing the resend functionality. Next state can be determined from FSM graph.

Set valid_resend_buffer - high
Sef write_to_buffer -> high
Set tx_busy_data
Set stream valid

No Yes
Resend?

Set output data to input buffer @ byte position Set output data to resend buffer @ byte position

Qutput buffer ready?

Subtract byte_count with data_width/8

Keep transmitting all bytes

Decrement word_count
Get next buffer word

Setbyte_cnt =16 Indicate last byte to output buffer

Yes

Next state DONE_WR

Next state GET_ACK

end

. These states

6.5 Flow STREAM CONTROL

Set valid_resend_bufier = low
Set tx_busy_sfream —= high

CLIENT_ABORT? Got pDTP RQ?

Ignore all other
client requests.

Set Wait Cycles

SEMI_PUSH FULL_PUSH

All packets sent?

y 2
Empty buffer MIN_RQ &

Buffer Count < RQ?

MIN_RQ &

| Decrement remaining
Buffer Count < RQ? 1

packets

Increment PACKET_ID

Wait for data
Next state PRE_EOS

Next state PRE_ST

NO_WAIT?

No

Next state PRE_EOS

10

end

