
pCT Data Transfer Protocol (pDTP)

Ola S. Grøttvik

v1.1 - September 11, 2019

1 Concept

To reliably transmit data over UDP, it might be required to add a layer on top to control the offload from
the pRU. This document presents a solution to the problem, the pCT Data Transfer Protocol (pDTP). The
protocol enables the offload to operate in either pull, semi-push or full-push mode. The client can request
the server (the pRU), to transmit a single packet of a desired size (PULL). Or the client can request a stream
of certain number of packets of a desired size (SEMI-PUSH). Full-push mode, is a mode were there are no
control of the stream, the server will continuously push available data to the client (FULL-PUSH).

In PULL mode, the client can either instruct the server to wait for an acknowledge or not, and also tell the
server to retransmit the last packet. In SEMI-PUSH mode no acknowledges are performed before the last
packet - the end-of-stream (EOS) packet. In SEMI-PUSH mode there are no re-transmit possibilities and
if packets are lost, they are lost forever. In either mode, the server will always try to transmit the number
of pRU words requested, but if no more data is available will only transmit what is possible. For PULL, if
no data at all is available, a special error packet is sent. For SEMI-PUSH, an end-of-stream (EOS) will be
transmitted. For FULL-PUSH, nothing is transmitted if no data is available, and the server will stay in the
mode until it is aborted.

The maximum theoretical pDTP payload is calculated by 65, 535(216−1)−20(IPv4)−8(UDP )−8(pDTPSH) =
65, 499 octets which translates to no more than 4093 pRU words. The calculation would be the same if pDTP
Server Header were to be extended to 16 octets, so there are possibilitites to add more fields for clarity. How-
ever, because of diminishing returns in efficiency gain, there seem to be a practical limit of 9000 bytes in the
payload. This yields an efficiency of 99% and is the maximum size of a so-called jumbo frame. Also, to make
the pDTP header format as clean as possible, a limit of 255 pRU words (4080 bytes) seems to be a sound
limit.

pDTP Client pDTP Server

pDTP Client Request

pDTP Server Data

Two header formats are defined, one for the client and one for server. This is done as the requirements for
the two are quite different; the client are just sending commands and the server are transmitting data as well
as acknowledgements.

2 pDTP Client Header Format

Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets?)
20 160 UDP (8 Octets)
28 224 DTP Client Opcode Flags DTP Special Commands Requested DTP Packet Size - in pRU words

1



2.1 pDTP Client Opcodes

Opcode Name Opcode Short Description Long Description
CLIENT_RQR 0x0 Client Read Request Client request the server to transmit a packet of a certain amount of pRU words
CLIENT_RQT 0x1 Client Test Request Client request the server to transmit a test packet of a certain amount of pRU words
CLIENT_RQS 0x2 Client Stream Request Client request the server to transmit a certain number of packets of a certain amount of pRU words
CLIENT_RQFS 0x3 Client Full-Stream Request Client requests the server to continuously transmit packets as data gets available
CLIENT_ERROR 0x4 Client Error Timeout while waiting for packet, or some other error
CLIENT_ACK 0x5 Client Acknowledge Acknowledge to the server that the last packet were obtained
CLIENT_ABRT 0x6 Client Abort Instructs the server to abort the current operation, e.g. CLIENT_RQFS
CLIENT_GS 0x7 Client Get Status Ask the server to transmits its buffer status, firmware information, and absolute clock

CLIENT_THROTTLE 0x8 Client Throttle Ask the server to throttle the output stream, by waiting for a certain number of clk cycles between each stream packet

2.2 pDTP Client Special Commands

Opcode / Bit 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
CLIENT_RQR NO_ACK MIN_RQ MAXIMIZE RQ_PACKET_SIZE
CLIENT_RQT NO_ACK RQ_PACKET_SIZE
CLIENT_RQS MIN_RQ MAXIMIZE NO_WAIT RQ_STREAM_SIZE RQ_PACKET_SIZE

CLIENT_RQSFS MIN_RQ MAXIMIZE NO_WAIT RQ_PACKET_SIZE
CLIENT_ERROR UNINTERPRETABLE TIMEOUT RESEND_PACKET
CLIENT_ACK
CLIENT_ABRT
CLIENT_GS

CIENT_THROTTLE WAIT_CYCLES

• NO_ACK - Server will not wait for an acknowledge from client

• RQ_PACKET_SIZE - The number of pRU words requested in each packet - max 255 pRU words, i.e.
∼ 4 kB

• RQ_STREAM_SIZE - Number of packets to transmit without listening for acknowledge - max 216−1 =
65.535 packets

• MIN_RQ - Will not send a packet if buffer has less than RQ_PACKET_SIZE. Pull: Server will send
an ERROR. Semi push: Server will transmit an EOS. Full push: Server will wait until buffer is filled
with required amount.

• MAXIMIZXE - Maximize the number of pRU words transmitted, based on the data available. Can be
used together with MIN_RQ.

• NO_WAIT - Server will not wait for buffer to be filled with data if buffer is empty or is filled with less
than MIN_RQ. Result is EOS in both RQS and RQFS.

• UNINTERPRETABLE - The received packet was not possible to understand

• TIMEOUT - The client timed out while waiting for something

• RESEND_PACKET - Ask the server to resend the last packet - only available after CLIENT_RQR

• WAIT_CYCLES - The number of clock cycles between each stream packet transmitted from the server.

3 pDTP Server Header Format

Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets?)
20 160 UDP (8 Octets)
28 224 DTP Server Opcode FLAGS DTP Packet ID / Buffer Fill Count Actual DTP Packet Size / Version Number
32 256 ABS_TIME (System Clock Cycles)
36 288 Payload (0 - 255 pRU words)

3.1 pDTP Server Opcodes

Opcode Name Opcode Short Description Long Description
SERVER_WRITE 0x0 Server Write Packet Server sends a packet
SERVER_STREAM 0x1 Server Stream Packet A part of a stream of packets
SERVER_ERROR 0x2 Server Error Timeout while waiting for ack, uninterpretable received packet or no data available
SERVER_EOS 0x3 Server End-Of-Stream Server is finished transmitting all possible packets

SERVER_STATUS 0x4 Server Status Server Status

2



3.2 pDTP Special Commands

Opcode / Bit 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SERVER_WRITE FULL ALMOST_FULL PACKET_ID AC_PACKET_SIZE
SERVER_STREAM FULL ALMOST_FULL PACKET_ID AC_PACKET_SIZE
SERVER_ERROR INVALID_RQ MIN_RQ EMPTY TIMEOUT BUFFER_FILL_COUNT
SERVER_EOS MIN_RQ BUFFER_FILL_COUNT

SERVER_STATUS FULL ALMOST_FULL EMPTY BUFFER_FILL_COUNT VERSION_NUMBER

• PACKET_ID - Incremented counter of all transmitted packets

• FULL - The offload data buffer is full

• ALMOST_FULL - The offload data buffer has less than 20% space left

• EMPTY - The offload data buffer is empty

• TIMEOUT - Timeout while waiting for something or uninterpretable

• NO_DATA - No data was available on server when receiving request

• BUFFER_FILL_COUNT - Amount of pRU words stored in offload buffer

• INVALID_RQ - Client asked about something unknown to the server

• VERSION_NUMBER - Current version of pDTP protocol

3.3 SERVER_STATUS

Offsets Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 IPv4 (20 Octets)
20 160 UDP (8 Octets)
28 224 SERVER_STATUS FULL ALMOST_FULL EMPTY BUFFER_FILL_COUNT VERSION_NUMBER
32 256 ABS_TIME (System Clock Cycles)
36 288 BUILD_DATE (YYMMDDHH)
40 320 GIT_HASH

4 Firmware

4.1 1 Gb/s - SGMII - Standard Ethernet

This approach are using a standard Ethernet cable that are connected to an off-chip SGMII PHY chip until
reaching the FPGA. A PCS/PMA Xilinx IP are converting SGMII to GMII before reaching the open source
MAC and the rest of the logic. All stream are 8-bit per clock cycle. Clocks are 125 MHz, as 125M*8 = 1G.

3



4.2 10 Gb/s - XGMII - SFP+/QSFP+

This approach are using a SFP+/QSFP+ cables, i.e. each QSFP+ connector holds 4x10Gb/s links. The
links are connected to a Multigigabit Transceiver(MGT) on the FPGA, which are then connected to an open
source PHY and the rest of the logic. All streams are 64-bit per clock cycle. Clocks are 156.25 MHz, as
156.25*64 = 10G.

5 pDTP Core

The pDTP Core module has the possibility of looping back UDP packets. This decision is done by the Port
Decision Logic. A loopback packet will be transmitted via the AXIS FIFO into the arbiter mux.

pDTP Client Packets will be interpreted by pDTP RX module. This module will then transmit a client
record to the pDTP TX module, which will transmit pDTP Server Packets based on the client orders.

Ports:

• 29070: Loopback Port

• 30000: pDTP Port

4



6 TX FSM and Flow

5



6.1 IDLE Flow

6



6.2 PRE_WR Flow

PRE_WR is similar to the following states: PRE_ST, PRE_ERROR, PRE_EOS, PRE_STATUS. How-
ever, these other states does not have a check for resend functionality. Also, next state can be determined
from FSM graph.

7



6.3 TRA_WR_HEADER Flow

TRA_WR_HEADER is similar to the following states: TRA_ST_HEADER, TRA_ERROR, TRA_EOS,
TRA_STATUS_HEADER. Next state can be determined from FSM graph.

8



6.4 TRA_WR_PKT Flow

TRA_WR_PKT is similar to the following states: TRA_ST_PKT, TRA_STATUS_PKT. These states
are missing the resend functionality. Next state can be determined from FSM graph.

9



6.5 Flow STREAM_CONTROL

10


