Preliminary DTC Optimization Results

2017-09-03

Method

Full MC simulations

The «Gold standard» in this context

- 1. Range for each water phantom thickness and geometry configuration
- 2. Range straggling
- 3. Energy spread distal to DTC

WET error [mm]

Resolution determination

So... Lets do some calculations

- 1. Resolution can be added quadratically
- 2. We can remove the different (known) components by removing also in quadrature
- Let's stay in the stable region of the detector (30 – 360 mm)

For the different geometries

NOTE: This time the DTC had too few layers, so the deepest results are not OK

Resolution determination

So... Lets do some calculations

Setup	Average Resolution	Res. ⊖ MC strag.	Res. ⊖ H ₂ O strag.
2 mm	4.20 mm (1.11%)	1.03 mm	0.76 mm
3 mm	4.55 mm (1.19%)	1.37 mm	1.98 mm
4 mm	4.89 mm (1.29%)	2.10 mm	2.67 mm
Loma Linda (@ 200 MeV)	4.1 mm (2.19%)?		3.00 mm (1.16%)?
FOCAL @ 188 MeV	9.6 mm (4%) !!		

Remember...

to range straggling, we would require $\Delta/\sqrt{12} < 3 \text{ mm}$ (Table 4).

The WEPL factor is approx. 2.18 At 2 mm: 4.4 / sqrt(12) = 1.27 At 3 mm: 6.54/sqrt(12) = 1.89 At 4 mm: 8.72/sqrt(12) = 2.51 At 5 mm: 10.9/sqrt(12) = 3.14

<u>3 * sqrt(12) / 2.18 = 4.76</u>

Poludniowski, G., Allinson, N.M., Evans, P.M., 2015. Proton radiography and tomography with application to proton therapy. The British Journal of Radiology 88, 20150134. doi:10.1259/bjr.20150134