
Control Interface

Ola S. Grøttvik

Version 1 - August 27, 2019

1 pRU Application Layer Protocol

This document describes the protocol needed to communicate with the pRU embedded system, and the pRU
bus system. The pRU embedded system is functioning as a TCP server listening to any hosts trying to make
a connection. Note that all tables show the protocol in network byte order(NBO).

2 General format

The following table shows the general format for all messages sent either to or from the pRU.

Offsets 0 1 2 N N+1
LEN CMDTYP PAYLOAD SEQ_NUM

2.1 LEN

Specified the number of bytes in the payload. The total size is limited by TCP/IP max frame size.

2.2 CMDTYP

CMDTYPE Description
0xAA Firmware Module R/W Request
0xFF ALPIDE chip R/W Request
0xBB Special command request
0x03 pRU Reply

2.3 SEQ_NUM

Sequence number is an optional value. Replies will have the same sequence number as the request that
initiated something on the pRU.

2.4 Payload

The payload length is varies with CMDTYPE and the number of request sent. E.g. one can transmit many
read register request in one message. This feature permits a bandwidth reduction if many requests are to be
sent in a row (for instance when configuring ALPIDE chips).

1



2.4.1 Payload Opcodes

The following table shows different opcodes that initiates each part of the payload.

CMDTYPE Description
0xAA READ_OPCODE
0xFF WRITE_OPCODE
TBD Not implemented, mask pixels
TBD Not implemented, unmask pixels
TBD Not implemented, select pixels
TBD Not implemented, deselect pixels
0x1 Deprecated (only used for PTB), Spawn offload thread
0x2 Deprecated (only used for PTB), Delete offload thread
TBD Not implemented, add chip to monitor
TBD Not implemented, remove chip from monitor

2.5 Firmware Module Requests

These requests send simple read or write requests to the modules directly connected to the bus system. These
modules include global_regs, trigger_manager, etc. All pRU tasks can be achieved by using these requests
only, but require full knowledge of all parts of firmware1.

2.5.1 Firmware Module Read Request

Format for a single read request:

Offsets 0 1 2 3 4
READ_OPCODE REGADDR

Format for a double read request:

Offsets 0 1 2 3 4 5 6 7 8 9
READ_OPCODE REGADDR_0 READ_OPCODE REGADDR_1

Note that even more requests can be sent at one time. This is true for all requests.

2.5.2 Firmware Module Write Request

Format for a single write request:

Offsets 0 1 2 3 4 5 6 7 8
WRITE_OPCODE REGADDR REGVAL

Format for a double write request:

Offsets 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
WRITE_OPCODE REGADDR_0 REGVAL_0 WRITE_OPCODE REGADDR_1 REGVAL_1

1E.g. do not use these for ALPIDE communication if not critical to do some serious debugging.

2



2.6 ALPIDE Requests2

These requests enables the user to communicate with ALPIDE sensor chips. Some special opcodes (opted
from the ALPIDE control interface), is used to determine what can of operation is performed (see figure
below). Only 1 byte opcodes are supported.

2.6.1 Request for updates

This whole scheme would need an update to allow for the following:

1. Transmit even more requests per message (this is now limited by 3-bit NSNGL-field). This could e.g.
be fixed by having 1 byte shared by CHIPID and STAVEID, and a whole byte for number of requests.
This would allow for 255 requests in one message.

2. Possibility to mask/unmask and select/deselect pixels

3. Possibillity to transmit all opcodes (even 2-byte opcodes like ADCMEASURE)

2.6.2 ALPIDE Read Request

Format for a single read request:

Offsets 0 1 2 3 4
RDOP CHIPID STAVEID(5b) NSNGL(3b) REGADDR

Format for a double read request:

Offsets 0 1 2 3 4 5 6
RDOP CHIPID STAVEID(5b) NSNGL(3b) REGADDR_0 REGADDR_1

Note that even more requests can be sent at one time. This is true for all requests.

NSNGL This is the number of requests in the message.

2It is HIGHLY advised not to use these requests for any kind of synchronization! Instead use trigger_manager features for
GRST, PRST, BCRST, etc.

3



2.6.3 ALPIDE Write Request

Format for a single write request:

Offsets 0 1 2 3 4 5 6
WROP CHIPID STAVE(5b) NSNGL(3b) REGADDR REGVAL

Format for a double write request:

Offsets 0 1 2 3 4 5 6 7 8 9 0
WROP CHIPID STAVE(5b) NSNGL(3b) REGADDR_0 REGVAL_0 REGADDR_1 REGVAL_1

2.6.4 ALPIDE Broadcast Opcode Request

Transmits the indicated broadcast opcode to all staves. However, transmits it one after another. Do NOT
use for synchronization.

Offsets 0
OPCODE

2.7 Replies

As commands are received, they are executed in order by the control interface. The reply payload is formed
when iterating over the received packet. The response depends on action taken.

Action Taken Code Response
Module Register Read 0x06 Code followed by register value
ALPIDE Register Read 0x07 Code followed by register value
Module Register Write 0x08 Code
ALPIDE Register Write 0x09 Code

Special Command 0x0A Code
ALPIDE Broadcast Opcode 0x0B Code

Error CMD (Invalid CMDTYP received) 0x01 Error Code
Error LEN 0x02 Error Code

Error CRC (Deprecated) 0x03 Error Code
Error delimeter (Deprecated) 0x04 Error Code

Error write/read (could not be performed) 0x0C Error Code
Error OPCODE (invalid OPCODE) 0x0E Error Code

Error special (Invalid special command) 0x0F Error Code
Pixel mask/select TBD Not implemented

2.8 Examples

2.8.1 Firmware Module R/W

Example of a single read. This command shows the reading of module address 0x2000_0004. Which, by
chance, is the global_regs register hash_code. Note that the length field value is 5, which is the number of
payload bytes.

Offsets 0 1 2 3 4 5 6 7 8
LEN CMDTYP READ_OPCODE REGADDR SEQ_NUM

0x00 0x05 0xAA 0xAA 0x20 0x00 0x00 0x04 0x00

Reply from pRU based on the previous example of read. Note that the value of the register read was
0xE321_8a56.

4



Offsets 0 1 2 3 4 5 6 7 8
LEN CMDTYP REPLY_OPCODE REGVAL SEQ_NUM

0x00 0x05 0x03 0x06 0xe3 0x21 0x8a 0x56 0x00

Example of a double read. Note that the length field value is 10, which is the number of payload bytes.
SEQ_NUM was randomly chosen.

Offsets 0 1 2 3 4 5 6 7 8 9 10 11 12 13
LEN CMDTYP READ_OPCODE REGADDR_0 READ_OPCODE REG_ADDR_1 SEQ_NUM

0x00 0x0A 0xAA 0xAA 0x20 0x00 0x00 0x00 0xAA 0x20 0x00 0x00 0x04 0x12

Reply from pRU based on the previous example of read.

Offsets 0 1 2 3 4 5 6 7 8 9 10 11 12 13
LEN CMDTYP REPLY_OPCODE REGVAL_0 REPLY_OPCODE REGVAL_1 SEQ_NUM

0x00 0x0A 0x03 0x06 0x19 0x08 0x20 0x21 0x06 0xe3 0x21 0x8a 0x56 0x12

Example of a double write.

Offsets 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
LEN CMDTYP WRITE_OPCODE REGADDR_0 REGVAL_0 READ_OPCODE REG_ADDR_1 REGVAL_1 SEQ_NUM

0x00 0x0A 0xAA 0xFF 0x20 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0xAA 0x20 0x00 0x00 0x18 0xFF 0xFF 0xFF 0xFF 0x24

Reply from pRU based on the previous example of write.

Offsets 0 1 2 3 4 5
LEN CMDTYP REPLY_OPCODE REPLY_OPCODE SEQ_NUM

0x00 0x0A 0x03 0x08 0x08 0x24

2.8.2 ALPIDE R/W

Example of a single read of the BUSY min width register. 0x09 indicates stave ID = 1, and 1 single request.

Offsets 0 1 2 3 4 5 6 7 8
LEN CMDTYP READ_OPCODE CHIPID STAVEID(5b) NSNGL(3b) REGADDR SEQ_NUM

0x00 0x05 0xFF 0x4E 0x01 0x09 0x00 0x1B 0xCE

Reply from the pRU based on the previous example of read.

Offsets 0 1 2 3 4 5 6
LEN CMDTYP REPLY_OPCODE REGVAL SEQ_NUM

0x00 0x03 0x03 0x07 0x00 0x08 0xCE

5


