
Summary of the
RTK Course

A Little History
• First there was VTK - visualisation toolkit 

General purpose visualisation

• For this they invented Cmake - which became more popular
that anything else they made :-)

• Then there was ITK - insight toolkit  
For segmentation and registration  
(of medical data like the visible human)

• Building on top is RTK - reconstruction toolkit 
Circular CT reconstruction  
not directly from Kitware - might become a module in the future

From Kitware

Registration & Segmentation3.6. Centered Transforms 211

Figure 3.24: Fixed and Moving image provided as input to the registration method using the Similarity2D

transform.

Figure 3.25: Resampled moving image (left). Differences between fixed and moving images, before (center)

and after (right) registration with the Similarity2D transform.

344 Chapter 4. Segmentation

Structure Seed Index Lower Upper Output Image

White matter (60,116) 150 180 Second from left in Figure 4.1

Ventricle (81,112) 210 250 Third from left in Figure 4.1

Gray matter (107,69) 180 210 Fourth from left in Figure 4.1

Table 4.1: Parameters used for segmenting some brain structures shown in Figure 4.1 with the filter

itk::ConnectedThresholdImageFilter.

Figure 4.1: Segmentation results for the ConnectedThreshold filter for various seed points.

The invocation of the Update() method on the writer triggers the execution of the pipeline. It is
usually wise to put update calls in a try/catch block in case errors occur and exceptions are thrown.

try

{

writer->Update();

}

catch(itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Let’s run this example using as input the image BrainProtonDensitySlice.png provided in the
directory Examples/Data. We can easily segment the major anatomical structures by providing
seeds in the appropriate locations and defining values for the lower and upper thresholds. Figure 4.1
illustrates several examples of segmentation. The parameters used are presented in Table 4.1.

Notice that the gray matter is not being completely segmented. This illustrates the vulnerability of
the region-growing methods when the anatomical structures to be segmented do not have a homo-
geneous statistical distribution over the image space. You may want to experiment with different
values of the lower and upper thresholds to verify how the accepted region will extend.

ITK

Coordinate systems180 Chapter 3. Registration

Figure 3.8: Different coordinate systems involved in the image registration process. Note that the transform

being optimized is the one mapping from the physical space of the virtual image into the physical space of the

moving image.

ITKv4 registration framework:

• Registration is done in physical coordinates

• The direction of the transform maps from the space of the virtual image to that of the moving
image

These two topics tend to create confusion because they are implemented in different ways in other
systems, and community members tend to have different expectations regarding how registration
should work in ITKv4. The situation is further complicated by the way most people describe image
operations, as if they were manually performed on a continuous picture on a piece of paper.

These concepts are discussed in this section through a general example shown in Figure 3.8.

Recall that ITKv4 does the registration in “physical” space where fixed, moving and virtual images
are placed. Also, note that the term of virtual image is deceptive here since it does not refer to

Spatial Objects
106 Chapter 5. Spatial Objects

NodeToParentNode
Transform

World

Parent Node

Node
ObjectToNode
Transform

IndexToObject
Transform

ObjectToParent
Transform

ObjectToWorld
Transform

IndexToWorld
Transform

Object Index

Figure 5.1: Set of transformations associated with a Spatial Object

to the user, the global transformation IndexToWorldTransform and its inverse, WorldToIndexTrans-
form, are also maintained by the class. Methods are provided by SpatialObject to access and manip-
ulate these transforms.

The two main transformations, IndexToObjectTransform and ObjectToParentTransform, are applied
successively. ObjectToParentTransform is applied to children.

The IndexToObjectTransform transforms points from the internal data coordinate system of the
object (typically the indices of the image from which the object was defined) to “physical” space
(which accounts for the spacing, orientation, and offset of the indices).

The ObjectToParentTransform transforms points from the object-specific “physical” space to the
“physical” space of its parent object. As one can see from the figure 5.1, the ObjectToParentTrans-
form is composed of two transforms: ObjectToNodeTransform and NodeToParentNodeTransform.
The ObjectToNodeTransform is not applied to the children, but the NodeToParentNodeTransform is.
Therefore, if one sets the ObjectToParentTransform, the NodeToParentNodeTransform is actually
set.

The ObjectToWorldTransform maps points from the reference system of the SpatialObject into the
global coordinate system. This is useful when the position of the object is known only in the global
coordinate frame. Note that by setting this transform, the ObjectToParent transform is recomputed.

These transformations use the itk::FixedCenterOfRotationAffineTransform . They are cre-
ated in the constructor of the spatial itk::SpatialObject.

Image Segmentation

168 Chapter 3. Registration

parameters

Optimizer

Transform

Interpolator

Metric

Moving Image

Fixed Image
fitness value

points

pixels

pixels

pixels

Transform

Figure 3.2: The basic components of a typical registration framework are two input images, a transform, a

metric, an interpolator and an optimizer.

Figure 3.3: The basic components of the ITKv4 registration framework.

considered as a new component in the registration framework known as virtual image that can be
an arbitrary set of physical points, not necessarily a uniform grid of points.

Various ITKv4 registration components are illustrated in Figure 3.3. Boxes with dashed borders
show data objects, while those with solid borders show process objects.

The matching Metric class is a key component that controls most parts of the registration process
since it handles fixed, moving and virtual images as well as fixed and moving transforms and inter-
polators.

Fixed and moving transforms and interpolators are used by the metric to evaluate the intensity values
of the fixed and moving images at each physical point of the virtual space. Those intensity values
are then used by the metric cost function to evaluate the fitness value and derivatives, which are
passed to the optimizer that asks the moving transform to update its parameters based on the outputs
of the cost function. Since the moving transform is shared between metric and optimizer, the above

Some Computing Concepts
• It’s C++ (and some Python bindings)

• Generic programming = heavy use of templates  
For optimal performance

• Object Factories = no constructors or destructors,  
but every class has a New() function 
E.g. for instantiation of hardware based filters

• Smart pointers - for memory management via reference counting
(own implementation predating C++11)

• Error handling via Exceptions - not so hip anymore ;-)

• Command/Observer pattern - like Qt signal/slot mechanism 
multiple objects can watch and act on a certain event or action

Basic Data Structure

• itk::Image (and itk::Mesh - not used here)

• ”represents an n-dimensional, regular sampling of
data. The sampling direction is parallel to direction
matrix axes, and the origin of the sampling, inter-
pixel spacing, and the number of samples in each
direction (i.e., image dimension) can be specified.
The sample, or pixel, type in ITK is arbitrary ”

Introduction CMake ITK RTK Conclusion

itk::Image physical information
42 Chapter 4. Data Representation

Figure 4.1: Geometrical concepts associated with the ITK image.

circles are used to represent the center of pixels. The value of the pixel is assumed to exist as a
Dirac delta function located at the pixel center. Pixel spacing is measured between the pixel centers
and can be different along each dimension. The image origin is associated with the coordinates of
the first pixel in the image. For this simplified example, the voxel lattice is perfectly aligned with
physical space orientation, and the image direction is therefore an identity mapping. If the voxel
lattice samples were rotated with respect to physical space, then the image direction would contain
a rotation matrix.

A pixel is considered to be the rectangular region surrounding the pixel center holding the data
value. This can be viewed as the Voronoi region of the image grid, as illustrated in the right side
of the figure. Linear interpolation of image values is performed inside the Delaunay region whose
corners are pixel centers.

Image spacing is represented in a FixedArray whose size matches the dimension of the image. In
order to manually set the spacing of the image, an array of the corresponding type must be created.
The elements of the array should then be initialized with the spacing between the centers of adjacent
pixels. The following code illustrates the methods available in the itk::Image class for dealing
with spacing and origin.

ImageType::SpacingType spacing;

// Units (e.g., mm, inches, etc.) are defined by the application.
spacing[0] = 0.33; // spacing along X
spacing[1] = 0.33; // spacing along Y
spacing[2] = 1.20; // spacing along Z

RTK training April 10, 2017 S. Rit 17

Introduction CMake ITK RTK Conclusion

itk::Image regions

LargestPossibleRegion: the image in its entirety.
BufferedRegion: the portion of the image retained in
memory.
RequestedRegion: the portion of the region requested by a
filter or other class when operating on the image.

RTK training April 10, 2017 S. Rit 18

Basic Workflow

• Because using variable regions and multithreading  
and GPUs, it’s a streaming model

• There are data objects (images)

• And processing objects (reader, writer, filter)  
applied to the data objects

Introduction CMake ITK RTK Conclusion

itk::ImageSource

A filter that creates (generates or reads from disk) an itk::Image

192 Chapter 8. How To Write A Filter

• A mesh region (ITK class itk::MeshRegion) represents an unstructured portion of data.

• The LargestPossibleRegion is the theoretical single, largest piece (region) that could repre-
sent the entire dataset. The LargestPossibleRegion is used in the system as the measure of the
largest possible data size.

• The BufferedRegion is a contiguous block of memory that is less than or equal to in size to
the LargestPossibleRegion. The buffered region is what has actually been allocated by a filter
to hold its output.

• The RequestedRegion is the piece of the dataset that a filter is required to produce. The Re-
questedRegion is less than or equal in size to the BufferedRegion. The RequestedRegion may
differ in size from the BufferedRegion due to performance reasons. The RequestedRegion
may be set by a user, or by an application that needs just a portion of the data.

• The modified time (represented by ITK class itk::TimeStamp) is a monotonically increas-
ing integer value that characterizes a point in time when an object was last modified.

• Downstream is the direction of dataflow, from sources to mappers.

• Upstream is the opposite of downstream, from mappers to sources.

• The pipeline modified time for a particular data object is the maximum modified time of all
upstream data objects and process objects.

• The term information refers to metadata that characterizes data. For example, index and
dimensions are information characterizing an image region.

8.2 Overview of Filter Creation

Filters are defined with respect to the type of

ProcessObject

Reader Gaussian
Filter

Image

ProcessObjectDataObject

Figure 8.1: Relationship between DataObject and
ProcessObject.

data they input (if any), and the type of data
they output (if any). The key to writing a ITK
filter is to identify the number and types of in-
put and output. Having done so, there are of-
ten superclasses that simplify this task via class
derivation. For example, most filters in ITK
take a single image as input, and produce a

single image on output. The superclass itk::ImageToImageFilter is a convenience class that
provide most of the functionality needed for such a filter.

Some common base classes for new filters include:

• ImageToImageFilter: the most common filter base for segmentation algorithms. Takes
an image and produces a new image, by default of the same dimensions. Override
GenerateOutputInformation to produce a different size.

http://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html

RTK training April 10, 2017 S. Rit 19

Example Workflow
194 Chapter 8. How To Write A Filter

Image

Image
File

Reader Filter
Gaussian Thresholding

Writer

Image
File

Renderer

Display

Image Image

Figure 8.2: The Data Pipeline

objects, connected into a pipeline topology. The input to a process object is a data object (unless
the process initiates the pipeline and then it is a source process object). These data objects in turn
are consumed by other process objects, and so on, until a directed graph of data flow is constructed.
Eventually the pipeline is terminated by one or more mappers, that may write data to storage, or
interface with a graphics or other system. This is illustrated in figures 8.1 and 8.2.

A significant benefit of this architecture is that the relatively complex process of managing pipeline
execution is designed into the system. This means that keeping the pipeline up to date, executing
only those portions of the pipeline that have changed, multithreading execution, managing memory
allocation, and streaming is all built into the architecture. However, these features do introduce
complexity into the system, the bulk of which is seen by class developers. The purpose of this
chapter is to describe the pipeline execution process in detail, with a focus on data streaming.

8.3.1 Overview of Pipeline Execution

The pipeline execution process performs several important functions.

1. It determines which filters, in a pipeline of filters, need to execute. This prevents redundant
execution and minimizes overall execution time.

2. It initializes the (filter’s) output data objects, preparing them for new data. In addition, it
determines how much memory each filter must allocate for its output, and allocates it.

3. The execution process determines how much data a filter must process in order to produce an
output of sufficient size for downstream filters; it also takes into account any limits on memory

Update mechanism
8.3. Streaming Large Data 195

Update()

Reader Filter
Gaussian Thresholding

Image Image Image

Update()

GenerateData()

Update()

GenerateData()
GenerateData()

Figure 8.3: Sequence of the Data Pipeline updating mechanism

or special filter requirements. Other factors include the size of data processing kernels, that
affect how much data input data (extra padding) is required.

4. It subdivides data into subpieces for multithreading. (Note that the division of data into sub-
pieces is exactly same problem as dividing data into pieces for streaming; hence multithread-
ing comes for free as part of the streaming architecture.)

5. It may free (or release) output data if filters no longer need it to compute, and the user requests
that data is to be released. (Note: a filter’s output data object may be considered a “cache”.
If the cache is allowed to remain (ReleaseDataFlagOff()) between pipeline execution, and
the filter, or the input to the filter, never changes, then process objects downstream of the filter
just reuse the filter’s cache to re-execute.)

To perform these functions, the execution process negotiates with the filters that define the pipeline.
Only each filter can know how much data is required on input to produce a particular output. For
example, a shrink filter with a shrink factor of two requires an image twice as large (in terms of
its x-y dimensions) on input to produce a particular size output. An image convolution filter would
require extra input (boundary padding) depending on the size of the convolution kernel. Some filters
require the entire input to produce an output (for example, a histogram), and have the option of
requesting the entire input. (In this case streaming does not work unless the developer creates a filter
that can request multiple pieces, caching state between each piece to assemble the final output.)

Ultimately the negotiation process is controlled by the request for data of a particular size (i.e.,
region). It may be that the user asks to process a region of interest within a large image, or that
memory limitations result in processing the data in several pieces. For example, an application may
compute the memory required by a pipeline, and then use itk::StreamingImageFilter to break
the data processing into several pieces. The data request is propagated through the pipeline in the
upstream direction, and the negotiation process configures each filter to produce output data of a
particular size.

What is RTK
Introduction CMake ITK RTK Conclusion

What is RTK?

http://www.openrtk.org/

An open-source and cross-platform toolkit for fast circular
cone-beam CT reconstruction based on the Insight Toolkit (ITK)

RTK training April 10, 2017 S. Rit 4

Ingredients of
Reconstruction

• Geometry - description of your source-detector setup

• Projectors - forward e.g. for iterative methods

• Pre-processing - e.g. for scanner properties

• Filtered backprojection - standard reconstruction

• Iterative reconstruction - specialized reconstruction

• Composite Filters - custom combinations

Forward Projection

http://www.ucdenver.edu/academics/colleges/medicalschool/departments/Radiology/About%20Us/Faculty/education-research-portal/Pages/
filtbackproj.aspx

collection of attenuation line integrals

Introduction CMake ITK RTK Conclusion

Ray cast forward projector
(rtk::CudaForwardProjectionImageFilter)

Choose a step length
For each detector pixel of each projection, start from the
source, and until you reach the pixel

Move one step towards the pixel
Interpolate in the volume at the current position
Add step ⇥ interpolated value to the pixel

RTK training April 10, 2017 S. Rit 52

Introduction CMake ITK RTK Conclusion

Voxel based back projector
(rtk::BackProjectionImageFilter and
rtk::CudaBackProjectionImageFilter)

For each voxel of the volume
For each projection

Project the center of the voxel onto the detector
Interpolate at that position on the detector
Add the interpolated value to the voxel

RTK training April 10, 2017 S. Rit 54

Introduction CMake ITK RTK Conclusion

Available in RTK

rtkforwardprojections
–fp Joseph, RayCastInterpolator, CudaRayCast

rtkbackprojections
–bp VoxelBasedBackProjection, Joseph,
NormalizedJoseph, CudaRayCast, FDKBackProjection,
CudaFDKBackProjection

Motion-compensated operators
CudaWarpForwardProjection
CudaWarpBackProjection

RTK training April 10, 2017 S. Rit 60

Introduction CMake ITK RTK Conclusion

Rationale

Real data often need to be pre-processed before they can
be used.
For example, taking the log of the ratio between x-ray
projection without object I0 and x-ray projections with the
object I to get line integrals g:

g = ln
I0
I

RTK training April 10, 2017 S. Rit 63

Pre-processing

Introduction CMake ITK RTK Conclusion

RTK pre-processing

Gathered in class rtk::ProjectionsReader with
scanner dependent branches, see online diagram

All applications using projections have a section
Input projections and their pre-processing
Common options are defined in file
applications/rtkinputprojections_section.ggo

rtkprojections just read, pre-process and write
projections

RTK training April 10, 2017 S. Rit 64

http://www.openrtk.org/Doxygen/classrtk_1_1ProjectionsReader.html

http://www.openrtk.org/Doxygen/classrtk_1_1ProjectionsReader.html
http://www.openrtk.org/Doxygen/classrtk_1_1ProjectionsReader.html
http://www.openrtk.org/Doxygen/classrtk_1_1ProjectionsReader.html

Introduction CMake ITK RTK Conclusion

Available pre-processing

In rtk::ProjectionsReader

Changing meta-information, cropping, binning
I0 constant value (0 means auto-detection)
Water pre-correction [Kachelriess et al., 2006]
Scatter correction [Boellaard et al., 1997]
And others under developement

Some are not yet in rtk::ProjectionsReader, e.g.,
rtk::LookupTableImageFilter for a simple
beam-hardening correction (also accessible via the
rtklut application)
rtk::MedianImageFilter (also accessible via the
rtkmedian application)

RTK training April 10, 2017 S. Rit 65

Introduction CMake ITK RTK Conclusion

Ideal continuous back projection

=)

RTK training April 10, 2017 S. Rit 50

Introduction CMake ITK RTK Conclusion

[Feldkamp et al., 1984]

This is not a course on tomography...

Known as the FDK or Feldkamp algorithm

Typical algorithm for 2⇡ circular cone-beam CT

Missing data ([Tuy, 1983]’s condition is not satisfied),
approximate algorithm

RTK training April 10, 2017 S. Rit 68

RTK includes several versions 
Also understands <2π scans
overlapping scans
non-centered detector geometries

Introduction CMake ITK RTK Conclusion

3D iterative reconstruction methods

Given measured projections p and the forward projection
operator R, find f such that Rf = p
Usually, R cannot be inversed. We seek an approximate
solution, as close as possible to f̂ = arg min

f
kRf � pk2

2

Depending on the method used to minimize the cost
function, the resulting algorithms take different names:

Gradient descent =) Simultaneous Iterative
Reconstruction Technique
Kaczmarz method =) Algebraic Reconstruction Technique
Block-Kaczmarz method =) (Ordered subsets)
Simultaneous Algebraic Reconstruction Technique
Conjugate gradient =) . . . Conjugate gradient

RTK training April 10, 2017 S. Rit 77

This is what we want to use - most likely path algo is iterative

Introduction CMake ITK RTK Conclusion

4D iterative reconstruction methods

Periodic motion during the acquisition (heart or lungs)
=) Extract a periodic signal, and its phase
Each of the N projections has been acquired at a given
phase �(n)
The cost function reads:

PN
n=1 kRnS�(n)f � pnk2

2, where
f is the 3D + time sequence of volumes
S�(n) is a linear interpolator
S�(n)f is a 3D volume
RnS�(n)f is a 2D projections calculated through
RnS�(n)f � pn is the difference with the measured projection

RTK training April 10, 2017 S. Rit 85

This is the research topic of the two presenters

Introduction CMake ITK RTK Conclusion

Writing a new composite filter in RTK

Do the math
Turn your equations into a pipeline, AND DRAW IT (really,
with a pen and a paper). Keep the drawing, you will need it
later
If some of the basic operations you need are not available
in RTK or ITK, write a new filter for each
Now that you have all the pieces, let us start
Please open

code/rtkConjugateGradientConeBeam. . . .h
code/rtkConjugateGradientConeBeam. . . .hxx

RTK training April 10, 2017 S. Rit 91

Introduction CMake ITK RTK Conclusion

3D iterative FDK algorithm

Perform an FDK reconstruction. You get “the current result”
Forward project the current result. You get “the simulated
projections”
Subtract the simulated projections to the measured
projections (the input). You get “difference projections”
Multiply the difference by �

Perform the FDK reconstruction of these difference
projections
Add it to the current result
Forward project the current result
. . .

RTK training April 10, 2017 S. Rit 99

Example
Workflow

Material from the course (~1.4GB)

https://cernbox.cern.ch/index.php/s/qBOeD2Tfw3Ev141

https://cernbox.cern.ch/index.php/s/qBOeD2Tfw3Ev141

