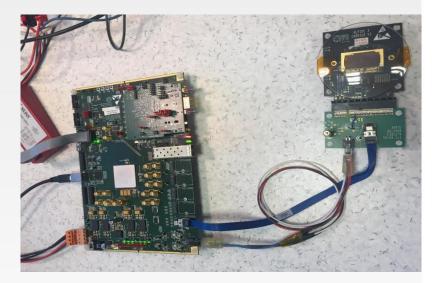


Readout Electronics Status

Ola S Grøttvik April 16th 2018

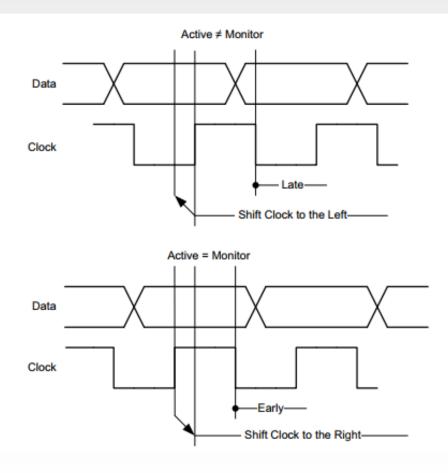


UNIVERSITY OF BERGEN

Previous work

- Combined efforts with ITS
 - Use of same readout unit
 - Xilinx Kintex 7
- Focus on employing regular I/O pins for data sampling
 - Will increase the amount of ALPIDE channels connected to RU
 - Developed new FPGA firmware that successfully obtained reliable data with 2m Firefly cables (very low BER)
- Complete simulation testbench for entire readout system
- Software developed for extensive testing

Board and FPGA-Update


- New readout board (Xilinx VCU118 evaluation kit)
 - Has multiple features that enable test of various schemes
 - Current development largely independent of ITS
- New Xilinx Virtex Ultrascale+ FPGA
 - More resources for buffering and various other tasks
- New IO Architecture
 - New theoretically improved sampling method
 - More complex
 - Required time consuming firmware update
- Produced adapter PCB for connection to various ALPIDE-boards
- Use of softcore processor for control communication
 - Protocol for reducing communication errors
 - Both USB UART and Ethernet

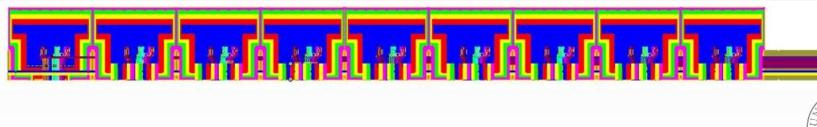
New sampling method

New sampling method

- Reduced resource usage
- Reduced calibration time
- Continuous phase tracking
 - Will theoretically cancel out ALPIDE jitter (needs testing)
- Cutting-edge -> implementation bugs (still in Xilinx beta)
- Very time-consuming to implement and do changes in architecture until Xilinx fixes wizard

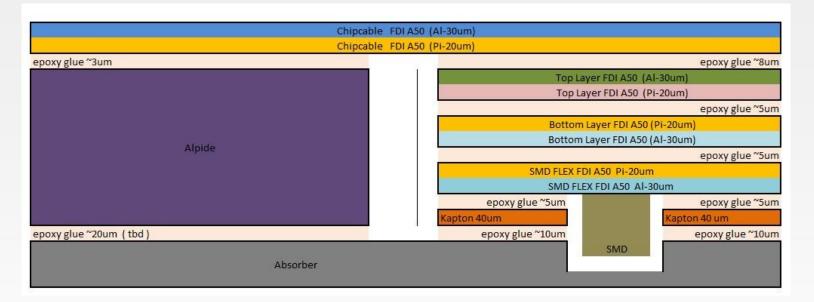
News (April 2018):

- Developed scalable firmware that greatly reduce implementation/alteration time
- Test Results:
 - Extremely low BER
 - A few issues in ~0.1% of runs -> some troubleshooting required



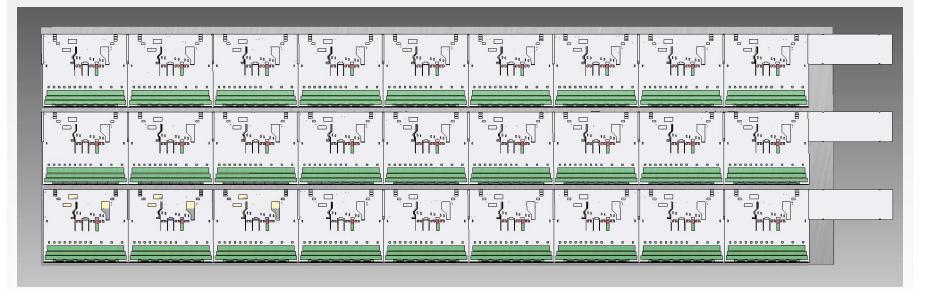
COOP with Utrecht/Kharkiv

- 2-chip aluminium carrier
 - Routing of chip ID to build 8-chip modules
 - Ready for testing
 - Currently located in Utrecht
- 9-chip slab for pCT
 - Waiting for impedance test results
 - Currently tests done in Utrecht
 - Possible tests in Bergen
- Utrecht: PCBs for connection to Bergen RU
- Bergen ready for testing functionality of both systems



COOP with Utrecth/Kharkiv

Cross section of detector layer – 9-chip slab



COOP with Utrecth/Kharkiv

- 3-string structure
- Detector layer base (x4 -> 36 chips)

Test systems and prototypes

- Production Test Box (PTB)
 - Testing of ALPIDE's mounted to Al chip-cables in Ukraine
 - Speed up production of 9-chip strings
- mTower
 - Beam tests
- Mini Focal (Utrecht)
 - Beam tests

One RU for all systems?

- Interface 24 ALPIDE chips
- Current baseline:
 - Trenz TE820, MPSoC Module with Xilinx Zynq UltraScale+ ZU4CG-1E
 - Affordable
 - Multiple systems can be produced
 - Reuse of firmware/software from VCU118 development

Photo Shows Similar Product

Challenges / Opportunities

- Significantly reduced on-chip RAM for buffering
 - Restricts on-chip event building
 - Forces a new data format and firmware-update
- Only 1 GB on-board RAM for buffering
 - May require high-bandwidth offload
 - In communication with two individual proprietary hardware TCP/IP IP vendors
 - Alternative: Software stack TCP/IP
 - Alternative: Open-hardware UDP IP?
- For PTB:
 - Requires software-wrapper to CERN APIDE test software
 - Requires ALPIDE testing expertise
- For beam tests:
 - Requires software suite

UNIVERSITY OF BERGEN

Dataformat

- Dataformat specification document «complete» and available
 - Current specification includes possibilities for addition of more metrics, versioning, etc...
- FPGA firmware under development
- Ready for software development
 - Event building
 - Protocol checking
 - Auto-creation of ROOT-files, etc...

1.1 General format [127:0]

Name	WORD_TYPE	RU	STAVE	CHIPID	CONTENT
Length	2	6	4	4	112
Bits	127:126	125:120	119:116	115:112	111:0

 $\mathbf{WORD_TYPE} \quad \mathrm{Determines \ the \ type \ of \ pRU \ word.}$

0x0 DATA_WORD
0x1 TAG_HEADER_WORD
0x2 TAG_TRAILER_WORD
0x3 TAG_EMPTY_WORD

- RU Identification of which specific readout unit the data originated from.
- STAVE Identification of which specific stave the data originated from.
- CHIPID Identification of which specific ALPIDE chip the data originated from.
- **CONTENT** Either collection of ALPIDE data or pRU tag data.

UNIVERSITY OF BERGEN

