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Abstract. The purpose of this work is to investigate the challenge of proton
path estimation in single sided proton list-mode imaging, i.e., using the available
information from the pencil beam scanning system instead of a front tracking
detector in combination with a rear tracking detector. A method to increase the
accuracy of the path estimation in such a setup is proposed and investigated in
Monte Carlo simulations.

The naïve approach is that each proton originates from the pencil beam
center. In order to improve upon this, we propose a model that combines the
known pencil beam phase space parameters and the measured exit vector where
the proton escapes the object. The model is found to be well represented in
beam spot sizes, different materials and phantom sizes by two parameters as
functions of the ratio of the phantom’s thickness to the proton’s initial range
(WET/WEPL). The optimized entrance position is then used as an input for a
fast cubic spline path estimation.

The model is shown to yield a similar accuracy compared to the gold standard
of the recently extended most likely path formalism for different beam energies,
phantom thicknesses, materials and beam spot sizes, while being favorable in
terms of implementation complexity and computational demand.

†These authors contributed equally to this work.
‡These authors share senior authorship on this work.
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In conclusion, the method presented in this work serves as a simple and
efficient way to estimate the proton trajectory in single sided list mode imaging
setups at no loss in accuracy compared to the extended MLP formalism.

Submitted to: Phys. Med. Biol.
Keywords: Proton Computed Tomography, Single Sided Proton Computed
Tomography, List Mode Imaging, Most Likely Path, Cubic Spline Path, Parametric
Model

1. INTRODUCTION

1.1. Single Sided Proton CT

Proton imaging has gained increasingly more interest over the past decades due
to the potential it offers for proton therapy — either in directly determining
the relative stopping power (RSP) required for treatment planning (Zygmanski
et al. 2000) or by enabling verification and optimization of the treatment plan
prior to each treatment fraction (Collins-Fekete et al. 2017a).

However, the non-linear proton trajectories due to multiple Coulomb
scattering (MCS) limits the achievable spatial resolution with the result that
conventional X-ray CT reconstruction methods not be directly applicable to proton
imaging. Therefore, in list-mode proton imaging, the trajectory of each proton
through the object is commonly estimated by applying the most likely path (MLP)
algorithm introduced by Schulte et al. (2008), or the phenomenological cubic spline
path (CSP) approach by Collins-Fekete et al. (2015).

Optimal path estimation requires accurate information of the particles’ energy,
position and direction, before and after the object to be imaged. For most
contemporary prototypes this is usually measured using multiple position sensitive
detector planes, called the front and rear trackers (Johnson 2018). However, in
single sided proton CT, as already proposed by Hanson et al. (1978), a volumetric
image of the patient’s RSP is calculated by measuring the protons’ outgoing
position and residual energy, produced by very thin pencil beams (1.6mm FWHM)
in order to achieve sufficient spatial resolution. Such a system would be especially
beneficial for proton imaging at synchrotron based facilities, where the particles
are delivered in bunches and not continuously: at bunch rates in the order of
100 ns, resulting in an average particle rate of at least ∼10MHz. Within a bunch,
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the protons are usually separated by a few nanoseconds, resulting in an effective
instantaneous particle rate of >100MHz — far above the rate capabilities of
current prototypes. In order to overcome this issue, Pettersen et al. (2017) propose
a pixelated range telescope able to handle such scenarios, in which a large number
of protons are tracked simultaneously in a layered pixel matrix. This makes a
front tracker difficult to implement — due to the high amount of scattering in the
phantom, it is very difficult to correlate the hundreds of proton tracks measured
before and after traversing the phantom with the envisioned prototype.

In this study, we want to explore the possibilities of estimating the individual
proton’s position at the patient’s entrance. The naïve approach is that each proton
originates from the beam spot’s mean position. Any improvement over this would
increase the resolution (and possibly validate the approach) of single sided list
mode proton CT. An approach would be to apply the back tracker measurements
as input to the Bayesian MLP framework as proposed in Krah et al. (2018).
Furthermore, we will try to simplify the Bayesian method with a parametrized
linear projection model (LPM) of the initial position in conjunction with a CSP
to obtain the proton’s estimated trajectory through the patient.

1.2. Definition of Vectors

A definition of the vectors X0, P0, X2 and P2 are given in other publications, e.g.
in Collins-Fekete et al. (2015). In short, X0 is the position of a single proton at
the object’s entrance, and P0 is the directional vector (∆x/∆z,∆y/∆z, 1) of the
incoming proton, where ∆(x, y, z) is the difference between the two front tracker
planes. X2 is the position of the proton exiting the object, and P2 is the directional
vector defined similarly. The vectors X1 and P1 are here depth-dependent and
give the position and direction inside the object. To aid with clarity, we denote
any tracker-measured vector with a tilde (X̃2, P̃2). Also defined is the knowledge
about the mean beam position and direction from the Treatment Planning System
(TPS), given respectively as X0

TPS and P0
TPS.

1.3. Cubic Spline Estimation of the Proton’s Most Likely Path

In the framework of Collins-Fekete et al. (2015), the CSP model is calculated by
introducing the two scaling factors Λ0 and Λ2 to account for the energy dependency
of the MCS occurring inside the imaged object. Its position at any depth t ∈ [0, 1]
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is calculated as

X1(t) = (2t3 − 3t2 + 1)X0 + (t3 − 2t2 + t)PΛ0

+ (−2t3 + 3t2)X2 + (t3 − t2)PΛ2, (1)

where
PΛ0 = P̂0 · Λ0 · |X2 −X0|, PΛ2 = P̂2 · Λ2 · |X2 −X0|. (2)

The factors Λ0 and Λ2 are parametrized as a function of the ratio of the object’s
water equivalent thickness (WET) to the initial water equivalent path length
(WEPL) of the proton, repeated here for completeness:

Λ0 = 1.01 + 0.43

(
WET

WEPL

)2

, Λ2 = 0.99− 0.46

(
WET

WEPL

)2

. (3)

The WEPL is calculated as the PSTAR-CSDA range in water (Berger et al. 2005)
at the proton’s initial energy. The WET is calculated by subtracting the WEPL of
the proton’s residual energy from the WEPL of its initial energy, using the a cubic
spline interpolation of the PSTAR-CSDA tables. This method is believed to yield
higher results compared to using the Bragg-Kleeman relationship as in Collins-
Fekete et al. (2015) — see Pettersen et al. (2018) for a comparison of this accuracy.
Collins-Fekete et al. (2017b) show that the above CSP algorithm is equivalent to
the MLP formalism as derived from the scattering theory by Williams (2004) and
Schulte et al. (2008). The MLP will be described in the following section.

1.4. Bayesian Models of the Most Likely Path

The MLP of the individual protons was first implemented using a Bayesian
approach, in which the Fermi-Eyges approximation to Molière’s scattering theory
is applied on the front and back tracker measurements and their uncertainties
(Williams 2004). In order to estimate the uncertainty of different proton imaging
setups, Krah et al. (2018) introduced an extended approach to the MLP. The
method not only allows for an optimized path estimation in the presence of
tracker uncertainties, but it can also be adapted for single sided list mode proton
radiography (and CT) using the information from the TPS in place of the missing
front tracker.

Since the particle scattering in the two lateral directions can be viewed as
independent, the MLP estimation is usually treated as a 2D problem where the
two lateral dimensions are evaluated separately. In this context, we define the
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two dimensional parameter vectors that denote the particles’ lateral position and
direction at a given longitudinal position.

yi =

(
ti
θi

)
, i ∈ {0, 1, 2} (4)

Here, t denotes either one of the two lateral axes. The indices 0 and 2 mark the
position at the front and rear tracker, respectively, and y1 is the position and
direction at a certain depth within the object.

To include the tracker uncertainties to the MLP estimation, Krah et al. (2018)
introduce the two likelihoods L(y′0|ỹ0,2) and L(y′2|ỹ2) to model the likelihood of a
certain entrance and exit position y′0,2, given the respective measurements ỹ0,2 and
respective covariance matrices Σin/out. By marginalizing over all possible entrance
and exit positions, they then derive a combined likelihood for the estimation of y1

as
L(y1|ỹ0, ỹ2) =

∫∫
L(y′0|ỹ0)L(y′0 → y1)L(y1 → y′2)L(y′2|ỹ2)dy′0dy′2. (5)

In the case of a missing front tracker, Krah et al. (2018) use a Gaussian model to
compute L(y′0|ỹ0), with σtin as the beam spot size at the entrance position, and
σθin as the angular confusion. To mirror the capabilities of Pettersen et al. (2017),
we allow here for measurements of the outgoing angle θ̃2. For simplicity, we use
an ideal rear tracker in this study. Using the following definitions from Krah et al.
(2018) then gives the MLP in the case of a missing front tracker:

yMLP = C2(C1 + C2)−1R0Sin · yTPS
0 + C1(C1 + C2)−1R−1

1 S−1
out · ỹ2, (6)

with

C1 = R0SinΣinS
T
inR

T
0 + Σ1 (7)

C2 = R−1
1 Σ2(R−1

1 )T. (8)

The Gaussian pencil beam model is represented by the covariance matrix Σin and

yTPS
0 =

(
tTPS
0 θTPS

0

)T
, where tTPS

0 and θTPS
0 are the mean lateral position and

the mean angle of the pencil beam as obtained from the TPS, respectively, and

ỹ2 =
(
t̃2 θ̃2

)T
is measured using the back tracker. By using a virtual point source

model with distance dS to the isocenter, an expression for Σin can be found for a
beam with lateral spread σtin and angular confusion σθin :

Σin =

 σ2
tin

σ2
tin
/dS

σ2
tin
/dS σ2

tin
/d2

S + σ2
θin

 . (9)
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A Linear Projection Model for Single Sided Proton CT 6

Sin and Sout are the straight line projections of the measurements onto the object
contour

Sin =

(
1 dentry

0 1

)
, Sout =

(
1 dexit

0 1

)
, (10)

where dentry and dexit are the physical distances of the tracker planes to the object
contour. In the case of a single sided proton radiography, dentry is the distance
between the isocenter and the object contour. For simplicity, in this study, the
isocenter was always located directly at the object entrance such that dentry = 0

and Sin = I. The scattering matrix Σ2 and the transvection matrices R0 and R1

are given as

Σ2 =

 σ2
t2

σ2
t2θ2

σ2
t2θ2

σ2
θ2

 (11)

R0 =

(
1 z − z0

0 1

)
, R1 =

(
1 z2 − z
0 1

)
. (12)

The σ2
t2,θ2

are the Eyges moments, defined using the Highland equation as in
Schulte et al. (2008):

σ2
t2

= E2
0

(
1 + 0.038 ln

z2 − z
X0

)2 ∫ z2

z

(z2 − z)2

β2p2

dz

X0

(13)

σ2
θ2

= E2
0

(
1 + 0.038 ln

z2 − z
X0

)2 ∫ z2

z

1

β2p2

dz

X0

(14)

σ2
t2θ2

= E2
0

(
1 + 0.038 ln

z2 − z
X0

)2 ∫ z2

z

(z2 − z)

β2p2

dz

X0

(15)

with E0 = 13.7 MeV, X0 ' 36.1 cm being the radiation length for water and the
term 1/β2p2 is the particles’ twofold momentum-velocity function. Σ1 is defined
similarly to Σ2, and can be obtained by exchanging z2 with z and z with z0 in the
definition of the scattering moments.

For computations in the MLP formalism, the 1/β2p2 function is usually
described by a 5th order polynomial function: the parameters of which are given
in Schulte et al. (2008) for protons with initial energy of 200MeV. This study,
however, centers around protons with an initial energy of 230MeV, since the system
envisioned by Pettersen et al. (2017) is to be operated at that energy in the future.
The parameters of the polynomial fit for this case were evaluated as given in Schulte
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A Linear Projection Model for Single Sided Proton CT 7

Parameter Value at 200 MeV Value at 230 MeV
a0 7.456× 10−6 5.776 19× 10−6

a1 4.548× 10−7 2.197 84× 10−7

a2 −5.777× 10−8 −1.239 20× 10−8

a3 1.301× 10−8 3.417 25× 10−9

a4 −9.228× 10−10 −2.202 83× 10−10

a5 2.687× 10−11 5.682 67× 10−12

Table 1. Results of the polynomial fit to the average value of the 1/β2p2 = anx
n

as a function of depth, for 200MeV (Schulte et al. 2008) and 230MeV protons
incident on 30 cm of G4_WATER. The coefficients are given in units of c2/MeV2

divided by appropriate powers of cm.

et al. (2008): recording the kinetic energy as a function of depth for 105 protons
incident on 30 cm of G4_WATER using the Geant4 MC simulation toolkit and then
computing the mean 1/β2p2 function at steps of 5mm. The parameters are given
in table 1. For comparison purposes, 200MeV protons were investigated as well,
since this reflects the beam energy used in most contemporary studies on proton
imaging.

2. LINEAR PROJECTION MODEL

2.1. Simplifying the Extended MLP Formalism

The formalism introduced by Krah et al. (2018) was developed to model the
uncertainty of the MLP estimation in the context of different particle imaging
setups. In this context, the marginalization of the likelihood with respect to all
possible entrance and exit parameter vectors simplifies the calculation and enables
a straight-forward computation of the uncertainty envelope around the MLP.

However, for the purpose of image reconstruction, the uncertainty envelope is
not relevant, and the MLP estimation can be simplified. For the extended MLP,
each step through the object is computed considering all possible entrance and
exit positions given their respective measurements. The MLP that maximizes the
likelihood in equation (5) naturally starts at the most likely entrance vector and
ends with the most likely exit vector. Now, the MLP is computed based on a set
of 4 measurements (t̃0,2 and θ̃0,2) and therefore, the most complex trajectory that
can be estimated is a cubic spline as outlined by Li et al. (2006) — this does not
change even when considering measurement uncertainties. This leads to the key
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A Linear Projection Model for Single Sided Proton CT 8

observation of this study that the extended MLP introduced by Krah et al. (2018)
can be obtained by estimating the most likely entrance and exit parameter vectors
and then computing a CSP between them.

In general, this MLP-CSP hybrid could be computed by first deriving the
optimal entrance and exit parameter vectors by maximizing the two likelihoods

L(y0|ỹ0, ỹ2) =

∫
L(y0|ỹ0)LΣ2(y0 → y′2)L(y′2|ỹ2)dy′2 (16)

L(y2|ỹ2, ỹ0) =

∫
L(y2|ỹ2)LΣ1(y

′
0 → y2)L(y′0|ỹ0)dy′0 (17)

with respect to y0 and y2, respectively. L(y0,2|ỹ0,2) depicts the likelihood from the
trackers’ uncertainty (or the uncertainty of the TPS pencil beam) and L(y0 → y′2)

the likelihood derived from the scattering theory. All likelihoods are bi-variate
Gaussians, their respective definitions were introduced by Krah et al. (2018) and
are repeated here only for the sake of completeness:

L(y0|ỹ0) = exp

[
−1

2
(y0 − ỹ0)T Σ−1

in (y0 − ỹ0)

]
(18)

LΣ1/2
(y0 → y2) = exp

[
−1

2

(
y2 −R0/1y0

)T
Σ−1

1/2

(
y2 −R0/1y0

)]
(19)

L(y2|ỹ2) = exp

[
−1

2
(y2 − ỹ2)T Σ−1

out (y2 − ỹ2)

]
. (20)

As with the extended MLP formalism, the tracker uncertainties are included in
equation (16) and equation (17) by marginalizing over all possible measurements
of the parameter vector opposing the one to be optimized.

The above argumentation and the given likelihoods are applicable for any list
mode proton CT setup. However, in this work we are focusing especially on single
sided setups, hence, in the following, we will investigate only equation (16).

To further simplify the optimization of the entrance parameter vector, we
make two assumptions: The first is (again) that of an ideal rear tracker. In the
case of single sided list mode proton radiography based on the TPS information
(yTPS

0 ) and using an ideal rear tracker (ỹ2 = y2), equation (16) reads:

L(y0|yTPS
0 , ỹ2) = L(y0|yTPS

0 )LΣ2(y0 → y2) (21)

The second assumption we make, is that the uncertainty of the beam delivery
system regarding the beam direction is sufficiently small such that θTPS

0 ≈ θ0.
Inserting this in equation (21) while equating the derivative of the log-likelihood
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A Linear Projection Model for Single Sided Proton CT 9

to zero yields the optimized entrance position and direction which can be used to
compute an optimized lateral position topt

0 to be applied as an input to the CSP
formalism. We arrive at

topt
0 =

[
(Σ−1

in )1,1t
TPS
0 + (Σ−1

2 )1,1(t̃2 − θTPS
0 · dph) + (Σ−1

2 )2,1/1,2(θ̃2 − θTPS
0 )

]
(
(Σ−1

in )1,1 + (Σ−1
2 )1,1

) , (22)

where again, t marks either one of the two lateral axes. This can be re-written as

topt
0 = a

(
t̃2 − tTPS

0 − θTPS
0 · dph

)
+ b
(
θ̃2 − θTPS

0

)
+ tTPS

0 , (23)

where

a =

(
Σ−1

2

)
1,1(

Σ−1
in

)
1,1

+
(
Σ−1

2

)
1,1

, b =

(
Σ−1

2

)
1,2/2,1(

Σ−1
in

)
1,1

+
(
Σ−1

2

)
1,1

. (24)

The indexing 1, 2/2, 1 remarks that the inverse scattering matrix is symmetrical,
and dph = |z2 − z0| is the physical thickness of the object.

The expression for topt
0 represents a weighted mean of the TPS position and

the rear tracker position measurement, projected onto the front of the phantom
along the beam’s initial direction. The weights are computed from the pencil beam
uncertainty, and the uncertainty resulting from the scattering, respectively. The
term (Σ−1

2 )2,1/1,2(θ̃2 − θTPS
0 ) is a correction factor that accounts for the change in

the particle direction.
Writing out the covariance for the beam spot, we find that(

Σ−1
in

)
1,1

= (dSσθin)−2 + σ−2
tin
. (25)

Note that for an ideal parallel pencil beam, i.e. σθin = 0, the bi-variate
Gaussian likelihood L(y0|yTPS

0 ) is exchanged by a simple one-dimensional Gaussian
L(t0|tTPS

0 ) and thus (Σ−1
in )1,1 is exchanged by σ−2

tin
in equation (23).

Alternatively, to get the optimal input vectors for the CSP algorithm, the
MLP outlined by Krah et al. (2018) could be computed at a small step ∆z

right after the object entrance and right before the object exit, respectively. The
resulting yMLP(z = z0 + ∆z) and yMLP(z = z2 −∆z) could then be used as input
for the CSP formalism. Note that yMLP is not defined for z = z0 and z = z2 due
to the argument of the logarithm in the definition of the scattering matrices σ2

t2,θ2
.

With the two methods described above, the path estimation would be
optimized to include the uncertainty of the front and rear measurements in the
same way as the formalism by Krah et al. (2018), but utilizing the speed of the
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A Linear Projection Model for Single Sided Proton CT 10

simple CSP formalism developed by Collins-Fekete et al. (2015). However, the
full strength of the CSP algorithm lies in the fact that it does not require the
parametrization of the 1/β2p2 function, as is necessary for the MLP approach. For
the MLP-CSP hybrid outlined above, the scattering matrices need to be computed
and, therefore, the parametrization of the momentum-velocity function has to be
known.

In this work, we introduce a phenomenological model that enables the
estimation of the optimized entrance position in the case of single sided proton
radiography and CT as a function of the rear measurements and the ratio
WET/WEPL to retrieve a generalized CSP formalism.

2.2. Definition of the Linear Projection Model

The LPM is a simplification of equation (23), where the scattering matrices(
Σ−1

2

)
1,1

and
(
Σ−1

2

)
1,2/2,1

are substituted by the free parameters AX and AP , to
be optimized through parameter scans from protons beams traversing through
objects of different thicknesses and materials. Through this substitution, we can
write equation (24) as

a =
AX

σ−2
tin

+ AX
, b =

−AP
σ−2
tin

+ AX
. (26)

The covariance of the beam spot in the point source approximation,
(
Σ−1

in

)
1,1
, has

been simplified as a parallel beam to σ−2
tin

. This approach preserves the model’s
ability to handle different incoming phase spaces in terms of beam spot sizes, and
it is assumed that deviations from a parallel beam are handled by the parameter
optimization. Following the notation from Collins-Fekete et al. (2015), we find the
expression for the LPM

X0
LPM =

(
AX

σ−2
tin

+ AX
X′2 −

AP

σ−2
tin

+ AX
dphP

′
2

)
+ X0

TPS. (27)

In this equation, the ′ signifies that the vector is translated around the origin
defined by X0

TPS and the beam direction P0
TPS:

X′2 = X̃2 −X0
TPS − dphP0

TPS (28)

P′2 = P̃2 −P0
TPS. (29)
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A Linear Projection Model for Single Sided Proton CT 11

2.3. Parameter Scans

In order to define the scalar parameters AX and AP , and to identify any potential
energy or WET dependencies, a number of parameter scans have been performed.
The Monte Carlo simulation studies were performed using GATE 8.1.p1 (Jan
et al. 2011) together with Geant4 10.4.p2 (Agostinelli et al. 2003). The physics
builder list QGSP_BIC_EMZ together with a maximum step size of 2mm in the
water phantom was chosen, and the water was modeled to have an ionization
potential of 78 eV (Grevillot et al. 2010). Phantoms consisting of 0–320mm water
were irradiated by a mono-energetic 230MeV proton pencil beam, with a Gaussian
circular spot size of 3.2mm, located at the object’s entrance. The divergence and
emittance of the beams were here 2mrad and 15mmmrad, respectively.

In each case, 104 protons were generated and registered at the tracker
planes. For each particle, a matrix minimization parameter scan of AP and
AX was performed. For each (AX , AP ) pair the error was evaluated as the
difference between the true and optimized beam position |X0

MC−X0
LPM|. Proton

histories with high angular deviations, primarily due to (in)elastic interactions,
were removed by performing a 2.5σ cut on the exit angle from P′2, and on the
minimum residual energy of the proton exiting the phantom.§ See figure 1 for an
example of a (AX , AP ) scan, showing the average |X0

MC −X0
LPM| error resulting

from all proton histories for each parameter point.
In figure 2 the results of these scans are shown, each entry showing the

optimal parameters from an optimization at a given object thickness and material.
Following Collins-Fekete et al. (2015), the results are best displayed as a function
of w = WET/WEPL. Exponential fits of the two parameters, applying the results
from all included materials, yield the values

AX = exp
(
2.5073− 6.3858w + 0.4913w2

)
(30)

AP = exp
(
1.8175− 5.9708w − 0.8158w2

)
. (31)

In figure 3 the a and b parameters of equation (26) from a similar
LPM optimization (in water) is compared to the theoretical predictions from
equation (23). Here, σt = 3.2 mm and 4th order polynomials are used in order
to minimize the parametric difference.¶ The parameters match well, taking

§The choice of using 2.5σ as a the angular filter is motivated by Gottschalk (2012): this is the
region in which the Molière scattering is well described by the Highland theory of equation (15).
¶In equations (30) and (31) a 3rd order polynomial is sufficient, since the different materials

convolve the WET/WEPL dependence.
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Figure 1. Parameter scan of (AX , AP ): Each cell in the 2D histogram
represents the errors between X0

MC and X0
LPM: from a 200 mm water phantom

irradiated by 230MeV protons. The "+" symbol marks the cell with the lowest
error.

into account that the theoretical model makes a few assumptions regarding the
incoming beam phase space that are inherently accounted for in the LPM.

2.4. Phenomenological Filtering of Large Angle Scattering

The path estimation as already stated above, is based on the Fermi-Eyges
approximation to multiple Coulomb scattering. Therefore, the MLP (and in
extension also the CSP) formalism can only describe such particles for which the
scattering in the phantom belongs to the Gaussian central part of the scattering
distribution. In Schulte et al. (2008) a 3σ filter on the angular displacement
of the particles was proposed to filter out the large angle scattering contribution
before image reconstruction. This is usually done by finding the standard deviation
directly from the particle scattering distribution, measured for each image pixel,
which requires to loop through all particle histories. This adds a lot to the
overall time consumption of the image reconstruction process. Additionally, the
computation of the standard deviation is somewhat sensible: the large angle
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)−1
are

shown as calculated from the parameter scan (equations (30) and (31)) and from
the theoretical predictions (equation (24)).

scattering itself largely affects the variance of the distribution compromising the
filter accuracy. The most accurate way to compute the standard deviation would
be Gaussian fitting of the distribution central part, but this would be even more
time consuming and is, therefore, not feasible for particle imaging. Another way
would be to use the FWHM of the distribution to estimate the standard deviation.

On the other hand, it would be highly preferable to have an accurate estimate
of the standard deviation without requiring an additional loop through the
particle histories which could be achieved by evaluating the Fermi-Eyges scattering
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Figure 4. The phenomenological parameter fit for choosing the optimal
2.5σ value of the back tracker angles (in terms of mrad), as a function of
WET/WEPL.

moments directly. However, this would require prior knowledge about the material
composition of the object for the calculation of the 1/β2p2 function (for which
again a parametrization would be needed) and the radiation length, making it
very hard to implement for practical purposes. Here, we therefore propose an
approximation to the standard deviation based angular displacement filtering,
following the argumentation of the optimization above and the work by Collins-
Fekete et al. (2015) that the scattering moments can be approximated for different
materials as a function of WET/WEPL.

Figure 4 shows the 2.5σ standard deviation of the Gaussian central part
of the angular displacement distribution for different materials as function of
WET/WEPL as obtained by a Gaussian fit. The solid line shows an exponential
fit to the data with the parameters

σθ2,max = exp
(
2.18 + 8.08w − 12.25w2 + 7.09w3

)
, (32)

where, again, w = WET/WEPL. Using this function, it is possible to quickly
filter on the expected angular displacement of each proton individually.
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3. RESULTS

The code for performing the LPM and MLP calculations and comparisons are
available at github.com/HelgeEgil/LinearProjectionModel.

3.1. Examples of the Models

In figure 5 several proton paths are shown for protons with an initial energy of
230MeV impinging on a water target of 160mm thickness. The particle trajectories
are estimated with the CSP formalism using the ideal measurements of X̃0 (i.e.,
with front tracker for comparison); with the naïve assumption that X0 = X0

TPS;
with the calculated X0

LPM; as well as with X0
MLP from the extended MLP

formalism for comparison. In figure 6 the RMS deviation between the estimated
path and MC ground truth path are shown for using different methods to estimate
the optimized entrance position (using 105 primary particles): the errors from
X1

MLP and X1
LPM are visually identical and significantly lower than X1

TPS.

3.2. Phantom Dependency on Model Accuracy

The estimation error of the optimized X0 increases roughly linearly with the
phantom size. In figure 7 the error of the LPM and extended MLP model is
shown for 200MeV and 230MeV protons traversing through water phantoms of
increasing sizes: in the case of X0

LPM, the same (AX , AP ) parameterization was
applied for both initial energies.

In figure 9, X0
LPM is calculated in the case of five different phantom materials

and varying thicknesses, and is shown as a function of the WET/WEPL ratio
since their ranges are dependent on the material. The (AX , AP ) parameters were
optimized for this set of materials, and we see that the X0

LPM accuracy is roughly
similar across the materials.

3.3. Pencil Beam Spot Size Dependency on Model Accuracy

In figure 8 the the LPM and MLP models have been compared in terms of the
accuracy of reproducing X0. The LPM has been optimized as a function of
σtin , and in MLP the parameters σtin and dsource are selected to match the beam
properties — these parameters would be known in a clinical setting. We see that
above σtin ∼ 2 mm there is little reduction of estimation accuracy due to the spot
size, even up to spot sizes of 15mm (35mm FWHM). Below 2mm, the X0 error
decreases quickly towards 0.5mm.
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Figure 5. Examples of proton trajectory calculations with a 230MeV proton
beam in a 160mm water phantom, using different methods to calculate the
optimized X1 path. The red curves display the "true" X1

MC paths, while the
blue curves show the various CSP or MLP X1 paths.

This result can be understood by looking at the role the covariance matrix of
the beam spot plays in the calculation of topt

0 : The larger the σtin , the smaller the
(Σ−1

in )1,1 = (dSσθin)−2 + σ−2
tin

(given that the beam divergence is held fixed). Now
consider (

Σ−1
in

)
1,1
�
(
Σ−1

2

)
1,1
, (33)

then

topt
0 =

(
t̃2 − θTPS

0 · dph

)
+ (θ̃2 − θTPS

0 )

(
Σ−1

2

)
2,1/1,2(

Σ−1
2

)
1,1

. (34)

In other words: For large spot sizes, the rear position is simply forward projected
onto the front along the protons initial direction adding the scattering correction.
Hence, the error of the position estimation plateaus with increasing spot size for
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Figure 6. Errors from the Most Likely Path calculations with a 230MeV
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the optimized X1 trajectory. The curves for X1
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LPM are visually

identical.
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Figure 7. The error in X0 estimation for the two models, in terms of the initial
energies 200MeV and 230MeV. Note that the LPM model is optimized for an
initial energy of 230MeV.
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Figure 8. The X0 estimation errors of the two models for different beam
spot sizes. The X0

LPM is calculated by using the parameters in equations (30)
and (31), where σtin is a model parameter.

a given phantom thickness and particle initial energy.

3.4. Comparison Between the LPM and MLP Models

In figure 7, the accuracy of the optimized entrance position resulting from the LPM
was compared to that of the extended MLP formalism by Krah et al. (2018), for
different energies and water phantom thicknesses (or, equivalently WET/WEPL
ratios). Little to no difference between the errors of the each model prediction for
X0 was found. However, while for the MLP, the correct parametrizations of the
1/β2p2 function was applied in each case, no parameters had to be changed for
the LPM. Similar was observed when investigating other materials. This is also
reflected in the path estimation accuracy shown in figure 6: the LPM in conjunction
with the CSP results in an equally accurate path estimation compared to what
would be achievable with the extended MLP algorithm.

The X0 estimation accuracy is kept constant when the the initial angle P0
TPS

is increased. This holds for initial angles far above the typical values for clinical
pencil beam angles (Grevillot et al. 2011).

In terms of computational time, it has been found the Bayesian MLP method
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Figure 9. Errors from X0
LPM in five different ICRU materials: Water, Adipose,

B100 Bone, A150 Tissue Equivalent Plastic and Cortical Bone. The initial beam
is a 230MeV proton beam.

described is approximately 15 times more demanding compared to the LPM in
conjunction with the CSP algorithm. This benefit is only slightly reduced when
using the CSP in conjunction with the theoretical prediction from equation (23)
instead of the LPM parameters. These numbers are reflected in Collins-Fekete
et al. (2015), and the difference can be crucial when considering that ∼200 million
protons are used in a volumetric CT reconstruction: the CSP can be optimized to
include just the same generality as the extended MLP formalism but using only a
fraction of the time.

3.5. Application of LPM to Helium Imaging

Since recently rising interest has been placed in helium ion imaging (Collins-Fekete
et al. 2017a, Volz et al. 2017, Piersimoni et al. 2018, Gehrke et al. 2018, Volz
et al. 2018, Martišíková et al. 2018), we show that the methods developed in
this work are applicable to single-sided helium imaging as well. The theoretical
prediction of equation (23) is directly applicable to other ion species, if the
scattering moments are scaled by a factor of the ion charge squared (z2) and
the appropriate parametrization of the 1/β2p2 function is used.
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Figure 10. The error in X1 estimation between protons and Helium ions,
having equal WEPL ranges (33 cm) and beam spot sizes (3mm).

Since for helium the 1/β2p2 function scales with a factor of one over the
atomic mass squared (1/A2) to that of protons (Collins-Fekete et al. 2017a, Gehrke
et al. 2018), the inverse scattering matrix elements in equation (24) only have to
be scaled by a factor A2/z2 = 4 compared to that of protons:

(Σ−1
2 )α1,1 = 4× (Σ−1

2 )p
1,1, (Σ−1

2 )α1,2/2,1 = 4× (Σ−1
2 )p

1,2/2,1 (35)

A beam of 230MeV/u Helium with σtin = 3 mm was simulated through a 160mm
water phantom, and an set of optimized model parameters was found. The
resulting |X0

LPM−X0
MC| accuracy is 0.65mm, half the value of 1.26mm for 230MeV

protons. This is expected from the scattering matrices, since the displacement
resulting from multiple coulomb scattering is a factor 2 smaller for helium ions
compared to protons (Collins-Fekete et al. 2017a, Gehrke et al. 2018). The
deviation between the optimized CSP based on the LPM entrance position and
the MC ground truth path for protons and helium ions in this scenario is shown
in figure 10.
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3.6. Measurement Uncertainties and Model Accuracy

In the extended MLP model (Krah et al. 2018), a term describing the uncertainties
in the X̃2 and P̃2 measurements can be added to equation (8), such that

C2 = R−1
1 S−1

outΣout

(
S−1

out

)T (
R−1

1

)T
+R−1

1 Σ2

(
R−1

1

)T
, (36)

where

Σout = σ2
p

(
0 1

−1/dT 1/dT

)
·

(
0 −1/dT
1 1/dT

)
+

(
0 0

0 σ2
sc

)
. (37)

The uncertainties of the hit position on the tracker, and on the hit direction due
to scattering in the first tracker layer, are given as σp and σsc, respectively. The
distance between the two back trackers needed to calculate P̃2 is dT .

To introduce uncertainties in terms of position σp and scattering σsc in the
X̃2 and P̃2, as found from the ideal detectors in MC, the following procedure has
been chosen (described in one dimension): First, find the ideal angle θ2 from P̃2.
Then, sample the Gaussian distribution G(µ, σ) to find the perturbed (scattered)
angle θσ2 . To mimic realistic measurements, xσ2 and xσ3 on the back tracker, we get

θσ2 = G (θ2, σsc) (38)

xσ2 = G(x2, σp) (39)

xσ3 = G(xσ2 + dT θ
σ
2 , σp). (40)

Then, X2
σ and P2

σ are calculated from equations (39) and (40), and they are
used to calculate X0

MLP taking into account σp and σsc as described above, and
X0

LPM. Note that the final direction vector P2
σ takes into account both the added

scattering and the added position uncertainty of both of the tracker planes.
The loss in accuracy after introducing tracker uncertainties are here calculated

in two contexts: The proton CT scanner of Bashkirov et al. (2016) (with front
trackers removed) where σp ' 66 µm and σsc ' 10 mrad, and a single sided proton
CT scanner under development (Pettersen et al. 2017) with expected properties of
σp ∼ 8 µm and σsc ∼ 7 mrad.

In figure 11 the X0
LPM and X0

MLP accuracy from the two setups are shown,
compared to using ideal back trackers. In general the two models perform similarly,
however X0

MLP outperforms X0
LPM for the small-to-medium phantoms, and vice

versa for the larger phantoms.
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Figure 11. The expected X0
opt accuracy degradation by uncertainties in the

X̃2 measurements due to scattering between the tracker layers and the RMS
resolution of the position measurements (Johnson 2018).

4. DISCUSSION

In this work, we have presented a simplified version of the extended MLP by Krah
et al. (2018) that can be used for single sided proton imaging. In the method,
first an optimized guess of the particle entrance point is found — either by taking
into account the beam’s phase-space and updating that information using the
rear tracker measurement combined with Fermi-Eyges’ approximation to Molière’s
scattering theory; or by a phenomenological optimization based on two parameters
as a function of WET/WEPL. This optimized entrance point is then used as input
for the optimized CSP algorithm by Collins-Fekete et al. (2015). It is noted,
that a similar approach to a MLP-CSP hybrid formalism has been investigated
in Brooke & Penfold (2018) to include the material dependence of the MLP into
the CSP formalism. In their formalism, the MLP would be computed at several
steps through the object to account for material heterogeneity and a CSP would
be interpolated in between the so derived points. However, in that work, no
considerations on tracker uncertainties or single sided proton imaging is made.

In the derivation of the method developed here, two assumptions have been
made: first we assumed that the beam delivery system is relatively trustworthy
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regarding the beam direction, such that each proton entered the object with the
direction specified by the TPS. This assumption can be justified by the fact
that the scattering deflection in the object is much greater than the deviation
of the particle’s initial direction stemming from uncertainties in the beam delivery
system. A difference between the optimized and the theoretical parameters is
observed. This is likely related to the fact that for small object thicknesses, the
multiple scattering of the particles is less pronounced and, therefore, the initial
direction uncertainty can not be neglected in the parameter optimization. The
phenomenological optimization naturally takes this into account, resulting in the
observed deviation between theoretically predicted and optimized parameters at
small WET/WEPL ratios. For simulations using an ideal parallel beam, the
theoretical and optimized parameters overlap even for small WET/WEPL ratios.
However, the models perform equally well in terms of predicting the initial position
of each proton.

The second assumption was that of an ideal rear tracker. While in general,
the uncertainty of the rear tracker could be included by building the model based
on equation (16), the results shown in this work indicate that the potential benefit
would be minor as introducing artificially the uncertainty of different detector
systems to the measurement of the outgoing particles direction did not have a large
impact on the model accuracy when compared to the gold standard represented by
the extended MLP algorithm. Especially for the system envisioned by Pettersen
et al. (2017), the difference between the two approaches is negligible.

Also, a drawback of the method is that it requires the proton measurements
to be distinctly connectable to the spot scanning information. This requires either
the detector capable of assigning a time stamp to each proton hit that can then
be connected to the TPS information, or, in the case of the system envisioned by
Pettersen et al. (2018), the acquisition frame rate of the detector to be faster than
the time interval between individual spots to avoid several spots to be contained
in one read out frame.

The main advantage of the method proposed here is that it allows
to utilize the favorable computational speed of the CSP algorithm without
compromising the path estimation accuracy compared to the extended MLP
algorithm. Both the theoretical derivation of the optimal entrance point and
the phenomenological optimization yielded similar results in this work. However,
the phenomenological optimization offers the additional benefit, that it does not
require the implementation of the scattering matrices and, therefore, the correct
description of the 1/β2p2 function. It is simple to implement and is valid in
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the same way for different energies and materials without a large increase in the
uncertainty.

Moreover, the model could also directly be applied for implementing a front
tracker to the detector system envisioned by Pettersen et al. (2018) even despite
the large multiplicity measured simultaneously: the model definition space would
become a discrete set of measurements taken at the front tracker. For each
proton, the most likely corresponding front tracker measurement could then be
found simply as the proton hit closest to X0

LPM, given, that the detector system’s
acquisition frame rate is faster then the spot scanning.

Additionally, it was shown that the model is directly applicable for other
ion species as well, and a comparison of protons and helium ions was drawn.
Here, it was seen that the smaller lateral displacement of helium ions compared
to that of protons results in a factor 2 improvement of the estimation of the
particle entrance position for a fixed beam focus, consequently increasing the
path estimation accuracy. Additionally, when looking at current beam delivery
systems, the lower scattering of helium ions in the beam monitoring system and
the air between nozzle and patient would enable a smaller achievable focus at
the isocenter. This indicates that the favorable spatial resolution achievable with
helium ions over protons in particle list-mode imaging outlined by Collins-Fekete
et al. (2017a) and Gehrke et al. (2018) would translate even more so to single-sided
setups.

The argumentation for the LPM presented in this work is not limited to
single sided proton imaging: the full generality of the extended MLP estimation
lies within the two likelihoods presented in equation (16), and equation (17).
Maximizing these likelihoods yields the optimized entrance and exit parameter
vectors that can be used as an input to the optimized CSP algorithm by Collins-
Fekete et al. (2015) for any particle list mode imaging device. This could even be
used in conjunction with the MLP algorithm by Schulte et al. (2008) and still be
slightly less time consuming than the extended MLP algorithm, as it would require
the consideration of the tracking uncertainties only once instead of at every step
through the object. Hence, existing MLP implementations would not have to be
changed and only the optimization of the input vectors would have to be added
to the reconstruction code. This advantage in implementation complexity and
computational speed comes at no loss of accuracy: the method outlined in this
paper yields exactly the same results as would be obtained with the extended
MLP formalism by Krah et al. (2018) in cases where only the proton trajectory
is relevant. Only if the uncertainty envelope around the MLP is of interest, the
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extended MLP algorithm is the more adapt formalism.
As a side result of this work, it was shown that the accuracy of the estimation

of the entrance point of the particles is not sensitive to the beam spot sigma for
broader pencil beams. However, a beam spot sigma smaller than 2mm — as
was already proposed by Hanson et al. (1978) — would greatly benefit the path
estimation. This is in line with the conclusion on the spatial resolution by Krah
et al. (2018), since a better estimate of the entrance position benefits the path
estimation and, hence, the spatial resolution achievable. Future work on single
sided proton imaging therefore should go hand in hand with the development of
accurate beam delivery systems — with the thin pencil beam focusing recently
demonstrated by Farr et al. (2018), accurate single sided proton imaging does not
seem a far fetched goal.

Additionally, in this work, as simple approach to filter out large angle
scattering events based on a WET/WEPL parametrization of the particle angular
displacement has been proposed. The method relies on the observation, that
the scattering moments can be approximated for different materials and phantom
thicknesses as a function of WET/WEPL. The downside of this method is that
it depends on the accuracy of the WET measurement of the detector. However,
for current prototypes, as for example the detector system outlined by Bashkirov
et al. (2016), the WET accuracy is comparable to the range straggling of the
particles which for protons is ∼1% of the initial range. Comparing with figure 4,
the difference in the 2.5σ parametrization for a WET uncertainty of 3.3mm (in the
case of 230MeV protons) is negligible. The main advantage of the proposed method
is that it does not need the computation of the scattering distribution which
requires looping over all particle histories before image reconstruction, but can be
performed on a particle-by-particle approach, vastly improving the reconstruction
speed.

5. CONCLUSIONS

In this study, we have shown the feasibility of estimating the individual beam spot
positions from measurements of the proton’s position and direction downstream
to the patient. This is a required approach in single sided proton CT, where
the incoming position is not measured and must be estimated in order to find its
trajectory through the patient.

Two different approaches to the calculation of an optimized incoming position
have been considered: a likelihood model based on Fermi-Eyges approximation
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to Molière’s scattering theory together with the position and direction of the
proton beam set in the treatment planning system; and a simpler linear projection
model where the scattering theory contribution is replaced by two optimized
model parameters. The two methods yield similar results, in terms of accuracy
and computational demand, however the linear projection model outperforms the
likelihood model in terms of implementation complexity. The model prediction
for the incoming proton position was used as input for the optimized cubic spline
path algorithm. The results were compared to the gold standard represented by
the recently extended MLP algorithm and the approach presented in this work
yields a great advantage in terms of computational demand while coming at no
loss of accuracy. We therefore conclude, that the approach presented in this work
is a efficient and easy to implement version of the extended MLP formalism and
has a great potential for single sided proton list mode imaging.
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