
Intro to Automatic Differentiation with CoDiPack

Max Aehle

Chair for Scientific Computing, TU Kaiserslautern

Mar 22th, 2021

1 Theory

2 Practical Demo

3 pCT-related Challenges
Numerical Algorithms
General Best Practices

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 1/ 10

Problem.
Given a computer program that computes f : Rn → Rm function, construct a
computer program that computes the derivatives alongside.
E. g. f (x) = x2 + 1, f ′(x)

∣∣
x=4

=?

Relevance of derivatives
Uncertainty Quantification: Gradients are sensitivities

Gradient-based optimization: Gradient points in the direction of steepest
ascent

Solution with Finite Difference Quotients

e. g. f ′(x)
∣∣
x=4
≈ (4.0012+1)−(42+1)

0.001 = 8.001

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 2/ 10

Solution with Automatic Differentiation
The program is a sequence of elementary operations, for which we
know differentiation rules.

Replace double and overload +, ·,
√

, sin, . . . !

forward mode: (simpler, good for few inputs)

Each variable stores value and gradient w. r. t. all input variables,
operators act on both: e. g. for primal code c = a * b,

c.val = a.val * b.val;

c.grad = a.grad * b.val + a.val * b.grad;

reverse mode: (good for few outputs e. g. optimization, memory-intensive)

Record all operations on a tape and play it backwards.
For each variable, compute the derivatives of all outputs w. r. t. it.

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 3/ 10

Demonstration with CoDiPack

C++ header-only library for Automatic Differentation, based on the
operator-overloading approach

Lead Developers: Max Sagebaum, Johannes Blühdorn, Tim Albring

https://www.scicomp.uni-kl.de/software/codi/

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 4/ 10

https://www.scicomp.uni-kl.de/software/codi/

Demonstration: Primal program

#include <iostream>

int main(int nargs, char** args) {

double x = 4.0, y;

y = x * x + 1;

std::cout << "f(4.0) = " << y << std::endl;

std::cout << "df/dx(4.0) = " << 2*x << std::endl;

}

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 5/ 10

Demonstration: Forward AD

#include <iostream>

#include "../CoDiPack/include/codi.hpp"

int main(int nargs, char** args) {

codi::RealForward x = 4.0, y;

x.setGradient(1.0);

y = x * x + 1;

std::cout << "f(4.0) = " << y << std::endl;

std::cout << "df/dx(4.0) = " << y.getGradient() << std::endl;

}

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 6/ 10

Demonstration: Reverse AD
#include <iostream>

#include "../CoDiPack/include/codi.hpp"

int main(int nargs, char** args) {

codi::RealReverse x = 4.0, y;

codi::RealReverse::TapeType& tape = codi::RealReverse::getGlobalTape();

tape.setActive();

tape.registerInput(x);

y = x * x + 1;

tape.registerOutput(y);

tape.setPassive();

y.setGradient(1.0);

tape.evaluate();

std::cout << "f(4.0) = " << y << std::endl;

std::cout << "df/dx(4.0) = " << x.getGradient() << std::endl;

}

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 7/ 10

Is that everything?

In general, we just have to replace double by a codi-type everywhere,
including numerical libraries etc.

But: Concerning numerical algorithms like

solving linear systems by an iterative scheme like DROP-TVS

fixed-point iteration

...,

algorithm-dependent adjustments will be necessary.

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 8/ 10

Is that everything?

In general, we just have to replace double by a codi-type everywhere,
including numerical libraries etc.

But: Concerning numerical algorithms like

solving linear systems by an iterative scheme like DROP-TVS

fixed-point iteration

...,

algorithm-dependent adjustments will be necessary.

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 8/ 10

Example for special treatment of numerical algorithm:
y = A−1 · x in forward mode

Primal code:

double* y = linsolve<double>(A, x);

Do not differentiate the numerical algorithm like this:

RealForward* y = linsolve<RealForward>(A, x);

Instead, find an equation/algorithm for the gradients:
product rule (∂

∂ input iA)y + A(∂
∂ input i y) = ∂

∂ input i x , thus

y.vals = linsolve<double>(A.vals, x.vals);

for(i=0; i<nInputVars; i++)

y.grads[i] = linsolve<double>(A.vals,

x.grads[i] - A.grads[i]*y.vals);

⇒ Let us find out when the pipeline prototype is ready.

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 9/ 10

Application-independent limitations and best practices

C++ header-only library, compile with --std=c++11.
Not accessible from other languages.

Avoid C-style malloc, free, memcpy.

codi-type must be used instead of double, in libraries also
 maybe we can avoid to differentiate ROOT

Support for parallelisation with MPI (MeDiPack) and
OpenMP (OpDiLib).

Partial support for CUDA.

Separation of algorithm and I/O is helpful here as well, so that no
dependencies are overlooked and gradients can be stored alongside
values.

Max Aehle Intro to Automatic Differentiation with CoDiPack Mar 22th, 2021 10/ 10

	Theory
	Practical Demo
	pCT-related Challenges
	Numerical Algorithms
	General Best Practices

