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Purpose: To describe a method to estimate the proton path in proton computed tomography (pCT)
reconstruction, which is based on the probability of a proton passing through each point within an
object to be imaged.

Methods: Based on multiple Coulomb scattering and a semianalytically derived model, the condi-
tional probability of a proton passing through each point within the object given its incoming and
exit condition is calculated in a Bayesian inference framework, employing data obtained from
Monte Carlo simulation using GEANT4. The conditional probability at all of the points in the
reconstruction plane forms a conditional probability map and can be used for pCT reconstruction.
Results: From the generated conditional probability map, a most-likely path (MLP) and a 90%
probability envelope around the most-likely path can be extracted and used for pCT reconstruction.
The reconstructed pCT image using the conditional probability map yields a smooth pCT image
with minor artifacts. pCT reconstructions obtained using the extracted MLP and the 90% probabil-
ity envelope compare well to reconstructions employing the method of cubic spline proton path
estimation.

Conclusions: The conditional probability of a proton passing through each point in an object given
its entrance and exit condition can be obtained using the proposed method. The extracted MLP and
the 90% probability envelope match the proton path recorded in the GEANT4 simulation well. The
generated probability map also provides a benchmark for comparing different path estimation
methods. © 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3453767]
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I. INTRODUCTION

There has been a long-time interest in proton computed to-
mography (pCT). Imaging using high-energy proton projec-
tions is not only technologically feasible but may, in addi-
tion, have practical benefits. Unlike conventional x-ray CT, a
pCT image will directly carry the information of proton stop-
ping power or electron density, which should be more accu-
rate than obtaining these quantities by calibrating and con-
verting an x-ray CT image. Therefore, pCT is useful for
treatment planning of proton therapy and may reduce the
uncertainty in the delivery of proton radiation therapy. A
proton beam of sufficient energy is required for pCT so that
the object to be imaged is traversed by the proton beam and
an image of the object can be reconstructed from measure-
ments of the entrance energy, entrance position, entrance di-
rection, residual exit energy, exit position, and exit direction
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of the protons. Since the dose is highest at their track end,
i.e., in the Bragg peak, protons that traverse the imaged ob-
ject will deposit only a relatively small dose along their path
through the object. Hence, pCT could potentially also be a
low dose imaging modality. In seminal work on pCT recon-
struction, the proton energy fluence has been used for pCT
reconstruction and proton scattering has been considered as a
perturbation.k3 Recently, Li et al.* described a pCT recon-
struction technique that employs the maximum-likelihood
(ML) estimation of single proton paths to reconstruct pCT
images. This ML proton path estimation technique allows
one to take multiple Coulomb scattering (MCS) into account.
This reconstruction scheme utilizes single proton informa-
tion in a highly efficient manner and as a result, the recon-
struction requires fewer protons per pixel than other pro-
posed pCT reconstruction techniques. In the ML formalism
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proposed by Schulte et al.’ the ML path of each proton is
analytically calculated based on the available entrance and
exit information of each proton. It has been further proposed
that a probability envelope around the ML path could be
employed for pCT reconstruction. In this work, we propose
an alternative method for proton path estimation that can be
employed to generate a proton path probability map, from
which the most-likely path (MLP) and a probability envelope
around the most-likely path can be extracted. Reconstruction
of the pCT image is done using the full probability map, the
extracted most-likely path, the extracted probability enve-
lope, and a cubic spline path, respectively.

Il. MATERIALS AND METHODS

Il.A. Projection equation for algebraic reconstruction
technique

Before we introduce our method for Bayesian inference-
based proton path probability estimation, it is useful to re-
view the algebraic reconstruction technique (ART) for pCT.
The version of ART used in the present study is a simulta-
neous algebraic reconstruction technique (SART).® Penfold
et al compared different versions of ART and variations
thereof, and have found that they do not vary much in terms
of the image quality achieved or their computational cost.
Moreover, Tang et al® also compared different iterative
methods for the purpose of x-ray CT reconstruction and
reached a similar conclusion.

Using the continuous slowing-down approximation, the
differential energy loss at an arbitrary position (x,y) in the
reconstruction plane is

—dE =S(x,y,E)dx, (1)

where S(x,y,E) is the stopping power in the material and dl
is a differential path length.

Next we separate the energy and material factors from the
stopping power by writing the stopping power as a product
of mass stopping power and physical density of the material,
and we furthermore multiply both sides of the relation by the
mass stopping power of E;=200 MeV at the arbitrary posi-
tion (x,y) in the reconstruction plane

S S S
- ;('x’y9E0)dE = ;(X,y,EO) : ;(-x7y7E) : P(xJ)dl (2)

Dividing both sides by the mass stopping power at energy E
for the material at the arbitrary point (x,y) in the reconstruc-
tion plane, we find

s
_(X,y,Eo)

P UE=S(vy.Epdl. 3)
—(x,y,E)
p

Now observe that for the two materials considered in Fig.
1, which represent the minimal and maximal material densi-
ties present in the normal human body, the percentage error
for the ratio of the mass stopping power at E,=200 MeV to
that of mass stopping power at energy E at an arbitrary re-
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FiG. 1. Percentage error of the mass stopping power ratio of 200 MeV to
that at energy E for the materials indicated compared to that of water.

construction point (x,y) is less than 0.6% over the range of
energy considered (data from NIST). Hence, the ratio of
mass stopping powers on the left hand side depends only
weakly on the material composition at the arbitrary point
(x,y) in the reconstruction plane. We can therefore approxi-
mate the mass stopping power ratio for the material at the
arbitrary point (x,y) in the reconstruction plane with the
mass stopping power ratio of water.

Ey Ey
[%,y)} - F(Hzm] , 4)
p p

E E

where [%(x , y)]i0 is  defined as [%(x , y)]?)
=§(-x3y’EO)/§(-X,y,E)-
Now using the approximation given in Eq. (4) for Eq. (3),

we find

S Eo
- _(HZO) dE = S(X,y,EO)dl- (5)
p E
The right hand side of Eq. (5) is the E,=200 MeV stop-
ping power at an arbitrary position of the proton path in the
reconstruction plane. Integrating both sides of Eq. (5) along
the proton path yields the following projection equation:

Equt S Ey
- J {—(HZO)} dE = J S(x,y,E)dl. (6)
P path

E; E

in

Using the projection equation given in Eq. (6), we can
reconstruct the E;=200 MeV stopping power value at any
point in the reconstruction plane. Note that we can obtain
this stopping power value at the reconstruction point without
having to assume a specific material or its physical density at
this reconstruction point. However, if the actual material and
its physical density at each reconstruction point are known
from some other imaging modality, then the reconstructed
Ey=200 MeV stopping power values can be also used for
quantitative calibration. Hence, Eq. (6) is the projection
equation for a E;=200 MeV stopping power image. For an
image composed of N pixels, the equation for projection i
can be written as follows:
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Equt S Ey N
pi=-— f |:—(H20):| dE = E WijS‘(EO) . (7)
E, LP E j=1

in

Here p; denotes the ray sum and w;; denotes the path length
of proton i through pixel ;.

Using the form of the projection equation given in Eq. (7),
an image with N pixels and M proton rays is given by the
following set of equations:

wiS +wpSs+ o+ winSy=pi,

Wy S1+ WS, + o+ wonSy=po

WaS1+ WaSa + -+ wynSy =P, (8)

where §; is the E;y=200 MeV stopping power for pixel
je{l,---,N}. The goal of ART is to iteratively find the so-
lution {S};c(1... 5y for the above equation set. For pCT re-
construction, the parameter set is determined from the proton
path estimation. Even though we restricted ourselves to work
with an initial proton energy Ey=200 MeV, the approxima-
tion we have made in Eq. (4) is also valid for proton energies
higher than that and in fact improves with increasing proton
energy. Therefore, our formalism can be employed over a
range of initial proton energies.

Ribj(x,y) = Wij = {

If one models the proton path as a probability map, i.e., one
assumes that proton i has a certain probability of passing
through pixel j, then one can reinterpret the projection op-
eration on the basis functions b;(x,y) as follows:

Ribj(x’y)zng’ (13)
where wi’j is now interpreted as the probability that proton i
passes through pixel j, multiplied by a term in units of length
to account for the correct dimension, i.e., one assumes that
the proton is smeared across the image according to a to-be-
determined probability distribution. We now embark on the
derivation of such a probability distribution.

II.C. Bayesian inference-based proton path probability
map

In what follows, we assume a uniform medium, unless
stated otherwise. Referring to Fig. 2, we assume that a proton
of energy E, is incident on the medium along the z-axis at
the origin from the left. Upon entering the medium, it will
undergo MCS (ignoring other effects since they are of sec-
ond order), changing its direction and position along its path,

Medical Physics, Vol. 37, No. 8, August 2010

Il.B. Probability-based projection operation

In this section, we will explore an alternative expression
of {wiitic1--myjeq1.--ny and its mathematical basis. The
breaking up of a continuous image f(x,y) into pixels can be
modeled as expanding a continuous function f(x,y) using a
set of basis functions b;(x,y)

N
f(x,Y) =2 gjbj(x’Y), (9)
j=1
where the basis functions b;(x,y) are given by
1 (x,y) inside pixel j
b/(x,)’) = (10)
0 elsewhere

and g; is the image value on pixel j. In our case, it is the 200
MeV stopping power g;=S;.

The projection operation using Eq. (8) above can then be
defined as follows:

N N
Pi=Rif(X,y)=ESjRibj(x,y) = 2 w;iiS;. (11)
j=1 j=1

The projection operator R; projects the basis function
%7 (x,y) onto the weight space ylfaldlng the.we1ght wij» which
is the path length of proton i inside each pixel j and needs to
be calculated from the proton path estimation

length of proton path in pixel j, proton i passes through pixel j

(12)

0, proton i does not pass through pixel j

ending up at a density and radiation length scaled depth z,
2=p/ LoZpnysica» Where Ly denotes the radiation length of the
medium. We denote the probability of this proton being de-
flected into the lateral position x and direction € in the z-x
plane by the distribution function F(z,x,6). The form of
F(z,x, ) does not need to be specified for now as the general
methodology is being introduced, though a modification of
Fermi’s form will be used as F(z,x,6) later. Note that the
lateral displacement x is also density and radiation length
scaled.

FiG. 2. Tllustration of Bayesian inference-based proton path probability es-
timation. The proton enters at position A and exits at position D. The prob-
ability of the proton passing position C is to be estimated.
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In Fig. 2, by construction, we have for the incoming con-
dition A (z4,x4,04)=(0,0,0), while we assume that we have
the means of measuring the exit condition D, which is given
by (zp,xp, 0p). The joint probability of a proton entering at
incoming condition A passing through the intermediate con-
dition Cy(z¢,x¢, 0¢) and then exiting the medium at exit con-
dition Dy can also be expressed in terms of the probability
that the proton enters the medium at incoming condition A
and exits the medium at exit condition D 4 and the conditional
probability that the proton will pass through the intermediate
condition Cy4 given the exit condition D,

P(A— Cy)- P(Cy— Dy)=P(A— Dy) - P(A— Cy|Dy).
(14)
Here P(X|Y) denotes the conditional probability, which

specifies the probability that the proton has passed through
condition X given that it is detected at exit condition Y.

Hence, we can write the conditional probability
P(A— Cy|Dy) as follows:
P(A— Cy)-P(Cy— D
PA — CJDy) = (A— Cy) - P(Cy— Dy) (15)

P(A — Dy)

Note that the subscript # indicates the conditions C and D are
for a specific direction of the proton. For path estimation,
however, we are interested in the probability P(A— C|D)
that a proton moves through (z¢,xc) regardless of the direc-
tion at C, given the specific exit condition D,

f P(A— Cy) - P(Cy— Dy)db

P(A— C|Dy) = PA Dy . (16)

Given an incoming proton beam at A, P(A— Cy),
P(A—Dy), and P(Cy— D) can all be expressed using the
distribution function F(z,x, ) as defined earlier, which will
be given an exact form below. For proton i, the parameter wi’j
is just the conditional probability P(pixel j|exit) following
the above calculation times a length term for having the cor-
rect dimension.

Note that we did not assume a specific form for the dis-
tribution function F(z,x,6). The distribution function
F(z,x,0) could be chosen from MCS theory or could be
determined by brute force through Monte Carlo simulation.
In their review of cosmic ray theory using earlier work of
Enrico Fermi, Rossi and Greisen® have derived the following
form for the distribution function F(z,x, 6) based on MCS:

—
13 w? 6 3x6 3x°
F(z,x,ﬂ):\—%exp{—w2<——%+i@>}, (17)

27 7 Z Z Z

where z denotes the depth, x denotes the lateral defection at
depth z projected into z-x plane, and @ is the direction rela-
tive to z-axis at depth z in z-x plane again. The term w is
related to energy of the incoming proton and is given by

Medical Physics, Vol. 37, No. 8, August 2010

w=—", (18)

where the constant E; has the dimension of energy and is
given by E,=u, 4w/ a=21 MeV; here u, denotes the rest
mass of the electron and « denotes the fine-structure con-
stant. Using the facts that y=(1-82)""? and that the rela-
tivistic momentum can be written as p=mgcy/3, one easily

finds that @ can be expressed as follows:

2 1
w=—“(y- —), (19)
Ec Y

where we denote by u the rest mass of the proton in MeV.
We will make use of this relationship below. As pointed out
by Rossi and Greisen’ for the case of MCS, the integration
over 6 can be extended over the entire real line [cf. Ref. 9, in
particular, the discussion on page 266 following Eq. (1.59)].
We will, however, consider the effect of extending the inte-
gration over 6 over the entire real line instead of restricting it
to the forward scattering interval [—7r/2,7/2] on pCT recon-
struction below. Integrating the distribution function from
(—o0,0) over 6 yields

e \6 w 3 w’x?
H(z,x) = F(z,x,0)d0= T Sl B (20)
o 2Vmz 4 z

This is the lateral position probability distribution at depth
z, irrespective of angle. This probability distribution can be
brought into standard Gaussian form, with zero mean and
using the depth dependent variance 0'12=2z3/3w2. Various
experimental studies have shown that a Gaussian distribution
models the position and angular distribution of incoming
heavy charged particles at a given depth in the medium well.
In Fermi’s derivation of F(z,x,6), w is assumed to be con-
stant, which is certainly not true for the pCT application.
Suppose our incoming protons have an energy of 200 MeV,
after penetrating 20 cm water, the residual energy will be
approximately 75 MeV. During this process, w can vary by a
factor of 3. In other words, w is also highly dependent on the
depth z. The Highland approximationlo can be used to handle
this problem; however, it requires integration along the
z-direction of the proton beam. For fast evaluation of w at a
given depth z, the following approach has been implemented.

Since H(z,x) is Gaussian, we assume F(z,x,6) and
H(z,x) have the same general form as given in Egs. (17) and
(20), in which w is replaced by a depth dependent term u(z)
to account for the energy loss along the proton’s path. Then,
the new forms of F,(z,x,6) and H,(z,x) are given by

—
V3 u(z)? @ 3x0 3x°
F,(z.x,0) = E?exp - u(z)2 ; - Z—z + Z—3 ,
(21)

(22)

Because the variance of H,(z,x) can be determined from
GEANT4 simulation at different depths in a homogenous me-
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dium, u(z) can be determined from simulation at different
depths, eliminating the need to have an analytical expression
for it. The u(z) term can also be scaled by the incoming
energy u(z) o« (y—1/7) since Eq. (19) still holds over a cer-
tain energy range. Once u(z) has been obtained, F,(z,x, 6)
can be determined, which can then be used to evaluate the
path probability for protons of a given incoming energy

f FM(A — Cg) . FM(C0—> D@)dec

P(A— C|Dy) = FASDy . (23)

II.D. Simulation and reconstruction procedure

Using the GEANT4 Monte Carlo toolkit the depth depen-
dent variance a’z2 was determined in water for protons having
incoming energies of 175, 200, 225, and 250 MeV, respec-
tively. Using the Monte Carlo derived values for the depth
dependent variance, the function u(z) for 200 MeV was then
determined and used in the function F,(z,x, ) when calcu-
lating the conditional probability P(pixel j|exit).

To test our method, proton projections were simulated on
a Shepp-Logan phantom.11 180 views of projections with 2°
interval, each having 20 000 protons were used. For a 256
X256 image, this corresponds to an average of 80 protons
per pixel used for reconstruction. A virtual detector was used
to record the position and momentum of each proton at the
entrance and exit position in the reconstruction region. The
entrance and exit information are then used to calculate the
conditional probability that a given proton passes through
each pixel of the image according to Eq. (16), i.e., the proton
path is smeared over the image. Each conditional probability
is normalized at the different depths, as expressed by a sub-
set of pixels I',, yielding

P(pixel j|exit)
Eje N P(pixel j|exit)

(24)

ij=

Because the reconstructed pixel values §; are stopping pow-
ers, each normalized conditional probability P; is further
scaled by the physical path length of proton, L;, so that the
projection Eq. (11) is met

N
pi= 2 WpS;. (25)
j=1

Although different path estimation methods give different
path lengths L;, for small angle scattering the path length is
to first order well approximated by a straight line connecting
the entrance and exit points. Thus,

P..
wh=—1—L. (26)

ij N
2/:1 Py

For reconstruction using only the extracted most-likely
path or the probability envelope, the abovementioned nor-
malization is done only on the pixels used.
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FiG. 3. Monte Carlo derived data for o .,(200 MeV)? and the third-order
polynomial fit of it.

At the beginning of the calculation, the whole reconstruc-
tion region is assumed to be water. Then iterative reconstruc-
tion for a 2 mm thick slice in the middle of Shepp-Logan
phantom is done using SART.

lll. RESULTS

lll.LA. The depth dependent variance o, in water for
200 MeV incoming protons as determined
from simulation data

To facilitate reconstruction, the Monte Carlo derived data
for crzz were fit using a third-order polynomial of z (in the
original form derived by Rossi and Greisen, o-z2 is propor-
tional to the third power of z), hence,

0,>=0.000 011 6z° - 0.000 582z +0.0207z. (27)

Both o, and z are in units of mm in water. Monte Carlo
simulated data for crzz together with its fit curve are shown in
Fig. 3. Since we are assuming that the incoming protons
form a differential pencil beam, there is no constant term in
Eq. (27). By adding a constant term, it is possible to model a
realistic incident proton distribution.

Once o, is determined u(z) can be calculated as follows:

27

50’ 5 (28)

u(z) =
and can then be employed in the calculation of the condi-
tional probability for each pixel using Eq. (23).

At this point, we would like to consider the effect the
integration of the distribution function with respect to 6 over
the entire real line instead over the forward scattering inter-
val [-m/2,/2] could have on pCT reconstruction. Integra-
tion of the proton distribution function over [—7/2, /2]
yields

w2 2 2.2
V3 w 4 wx
H(z,x)= (— ——)

F(z,x,0)d0= ——=—5ex
. ( ) 4\’,; 32 P 3 3
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For x <z, this simplifies to

Iy

H.)| V3 ( 4w2x2> f< wﬂ') (30)
2,X) |ye. = ——=—35exp| = =— Jerf| —=|.
< g2 P 2 24

3 \Vz

Note that the lateral distribution function given by Eq.
(30) remains Gaussian with propagation in z. Since we have
made no detailed assumptions regarding the functional form
of H(z,x) other than that it remains Gaussian, with propaga-
tion in z, the fit for the variance given in Eq. (27) is also
applicable to this form of H(z,x). Using the fit of o, and its
relationship with , the value of the error function
erf(rw/2\z) in Eq. (30) at different depths z can be evalu-
ated, yielding a value that is equal to 1 for all z>0.1 mm.
Therefore, the error function does not affect the calculation
or reconstruction when x <<z, as is appropriate for MCS.

The value of the term erfl w(mz+3x)/2z¥?]+erfl w(mz
—3x)/2z%?] in Eq. (29) without assuming x<z can also be
numerically evaluated. The value of this term is 2 for
z>1.3 x, which includes the condition of MCS, and we are
therefore justified to use the simple form for H(z,x) given in
Eq. (20).

lll.B. Correction for the change in incoming energy
by scaling u(2)

Using our derived scaling law for u(z) o (y—1/7), the val-
ues obtained for u(z) from the 200 MeV data can be used to
fit the Monte Carlo simulated data obtained for u(z) for other
energies as well. Figure 4 shows a comparison of the scaled
and measured value of o, at a depth z=10 cm. As seen from
Fig. 4, the scaled ratio agrees with the measured one over a
certain range of energy. Therefore, in practice, sampling a
limited number of energies is sufficient for covering a large
energy range.

lll.C. Estimated proton paths

An example of a path probability map is shown in Fig. 5.
Figure 5(a) shows the full probability map overlaid with the
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FiG. 5. A typical example of path estimation in 0.25 mm resolution. This
path is 24 cm long in its original direction and the lateral deflection is 7.5
mm. (a) Full probability map overlaid with the real path (open squares with
dashed line), extracted MLP (stars with dashed line), and CSP (open circles
with dashed line); (b) 90% probability path envelope overlaid with the real
path (open squares with dashed line), extracted MLP (stars with dashed
line), and CSP (open circles with dashed line).

proton path obtained from the GEANT4 simulation (open
squares with dashed line), extracted MLP (stars with dashed
line), and CSP (open circles with dashed line); Fig. 5(b)
shows 90% probability envelope (called MLP90) overlaid
with the proton path obtained from the GEANT4 simulation
(open squares with dashed line), the extracted MLP (stars
with dashed line), and CSP (open circles with dashed line).
The most-likely path is given by pixels that carry the highest
conditional probability at each depth, i.e., the most-probable
path. It can be shown that this most-probable path is equiva-
lent to the most-likely path in the framework of maximum-
likelihood estimation. Therefore, for consistency with the ex-
isting literature, we are using the terminology MLP in
present study as well. The 90% probability envelope
(MLP90) is given by all pixels that have a probability that is
higher than 90% of the probability of the most-probable
pixel at each depth.

lI.D. Image reconstructed using full probability map,
extracted path, and extracted envelope

Images reconstructed using CSP, the full probability map,
the MLP extracted from the probability map, and the MLP90
probability envelope are compared in Fig. 6. The projection
data used are identical: 180 views, each view has 20 000
protons. Dose to the center of the phantom is 0.70 mGy as
recorded by a dose tally during the GEANT4 simulation.

Using a full probability map [Fig. 6(b)] allows one to
reconstruct a smoother image than any other path estimate
for the proton path, though a pronounced dark ring artifact
can be appreciated at the boundary between the bony shell
and the brain tissue of the phantom. To a lesser extent, this
artifact is present across all object boundaries in the phan-
tom. We have traced this artifact back to the GEANT4 simu-
lation and it appears that GEANT4 does not correctly model
proton energy loss across object boundaries, which leads to
estimates of stopping powers that are lower than their actual
value across object boundaries, leading to the dark ring arti-
fact present Fig. 6(b) at the boundary between the bony shell
and the brain tissue when using the full probability map for
pCT reconstruction. However, when one closely scrutinizes
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FIG. 6. Reconstruction of pCT using different proton path estimations. (a)
One slice of a pCT image of the Shepp—Logan phantom reconstructed using
CSP with bilinear interpolation; (b) the same slice reconstructed using the
full probability map; (c) the same slice reconstructed using MLP extracted
from the probability map; (d) the same slice reconstructed using the 90%
probability envelope (MLP90).

the other pCT images that have been reconstructed using the
other path estimation techniques, one finds that the dark ring
artifact that is so pronounced in Fig. 6(b) is also present in
these images, albeit masked by reconstruction noise.
Reconstruction using CSP with bilinear interpolati0n6
shown in Fig. 6(a) and MLP shown in Fig. 6(c) are nearly
equivalent in their performance, enabling visual detection of
several of the elliptical shapes (ellipses B, C, D, and E, see
Fig. 7) inside the phantom, whose density differences range
from 2% to 4%. In Fig. 6(d), the 90% probability envelope

\

FIG. 7. (a) Densities in Shepp—Logan phantom [labeling follows the original
label of Shepp and Logan (Ref. 11)]: Ellipse B: 1.02, C: 1.00, D: 1.00, and
E: 1.03 g/cm?. (b) The implemented Shepp-Logan phantom in GEANT4.
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FiG. 8. (a) Ratio to stopping power in ellipse C and (b) standard deviations
of stopping power values in selected regions of the image reconstructed
using different path estimations. Refer to Fig. 7(a) for region labeling. For
calculation of stopping power ratio, the average stopping power in ellipse C
is considered to be 1. The ground truth values are the actual ratios used in
simulation as defined by Shepp and Logan (Ref. 11).

(MLP90) is used for pCT image reconstruction with the re-
sult that the image is smoother than both the CSP recon-
structed pCT image and the MLP reconstructed pCT image.

lll.E. Quantitative accuracy and noise
characterization

For the purpose of treatment planning for proton radiation
therapy, the quantitative systematic accuracy of the recon-
structed pCT is important. The noise level is of lesser dosi-
metric importance, as noise in CT value does not degrade
path length accuracy if the mean CT accuracy is maintained.
However, noise level does degrade image clarity. Here we
characterize the stopping power accuracy and noise by com-
paring the calibrated average and standard deviation of re-
constructed 200 MeV stopping powers inside each of the
elliptical shapes in the Shepp-Logan phantom. We assume
the average stopping power in ellipse C, which consists of
water, can always be accurately calibrated. Figure 7 shows
the standard Shepp—Logan phantom we have used in our
GEANT4 simulation with several major elliptical shapes la-
beled. The average and standard deviation from recon-
structed images as well as the actual values are plotted in
Figs. 8(a) and 8(b).

The CSP and MLP methods yield similar results for the
accuracy of the reconstructed average stopping power inside
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each of the elliptical shapes. However, the full probability
map performs slightly worse, which is partly due to the dark
ring artifact in ellipse B.

However, the full probability-map-based reconstruction
method yields the least noisy image (except in ellipse B due
to the dark ring artifact). The noise of the other three ellip-
tical shapes are shown in Fig. 8(b) in the order of best to
worst signal to noise ratio yields the following ordering of
the path estimation methods MLP90, CSP, and MLP.

lil.LF. Computational cost

It is worth noting that because reconstruction involves
more pixels in image space, the Bayesian inference-based
proton path probability estimation is computationally more
costly than the cubic spline path estimation method. For the
reconstruction of a single pCT slice using the same projec-
tion data, the Bayesian inference-based proton path probabil-
ity estimation scheme takes about one order of magnitude
more time than the CSP estimation.

IV. CONCLUSION

In this work, detailed theoretical and computational
schemes have been proposed and derived for the statistical
estimation of proton path probability. The most-likely path or
a path probability envelope can be extracted from the full
probability map, and then used for pCT reconstruction. The
full conditional probability map when used directly for pCT
reconstruction yields a reconstructed image that is smoother
than those obtained using the other path estimation methods.
The most-likely path and the 90% probability envelope ex-
tracted from the full probability map perform similarly as the
cubic spline path.

The CSP path consistently falls within the 90% probabil-
ity envelope. Therefore, our path probability map provides a
framework for explaining why cubic spline fitting may be an
acceptable method for proton path estimation for pCT recon-
struction.
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