
Comparison of accuracy of parameterized 1 

individual proton range models 2 

Introduction 3 

An accurate calculation of proton ranges in phantoms or detector geometries is crucial for correct 4 

decision making in proton therapy and related activites such as proton imaging. The measurement of 5 

ranges in phantoms performed during commissioning and quality assessment serves as a ground truth 6 

for the calculation between range and energy in water. For benchmarking and calibration of proton 7 

range telescopes, it is important to have an accurate calculation scheme between arbitrary ranges and 8 

energies (Rinaldi et al. 2014; Pettersen et al., n.d.). To this end, several parameterizations of the range-9 

energy relationship exist, exhibiting different levels of complexity and thus accuracy. In addition, 10 

ranges are often expressed in units of Water Equivalent Thickness (WET): by using the energy as the 11 

connection between range in material and range in water, the WET can be calculated. In order to 12 

calculate the pristine depth-dose curve for the depth-dependent energy deposition of individual proton 13 

tracks, a differentiation of the energy-range parameterization can be used. In this study we compare 14 

the accuracy of some of the different parameterizations of the range-energy relationship when applied 15 

in this context. 16 

Materials and Methods 17 

In this study, different models for the relationship between range and energy are evaluated based on 18 

their ability to correctly reproduce the proton range in water at different energies as found in the 19 

Continuous Stopping Down Approch from the PSTAR database (Berger et al. 2005). 20 

Four models are placed under consideration: These are either semi-empirical or based on interpolation. 21 

The semi-empirical models are derived from the Bethe equation and fitted to experimental data in 22 

order to find the parameters arising from the particular parameterization scheme. The interpolation-23 

based models use different approaches to interpolate from look-up-tables from tabulated range data. 24 

The models and analysis are created using ROOT 5.34/19 using C++ code, and the range-energy data 25 

are downloaded from the PSTAR webpage and loaded in the program. The data fitting library TMinut 26 

in ROOT has been used to find the model parameters. 27 

It is not in the scope of this study to validate the accuracy of the experimental data from the different 28 

sources, such as PSTAR (Berger et al. 2005), SRIM (Ziegler 2015), Janni (Janni 1982) or ICRU49 29 

(Wyckoff 1993). Previous studies, such as (Paul 2013), has estimated that the ICRU49 values should 30 

be accurate to the 0.5% level, depending on the value of the mean ionization potential I. The question 31 

is to which degree the different models are able to reproduce the tabulated data after being properly 32 

trained. 33 

Semi-empirical models 34 

The Bethe equation (K.A. Olive and Particle Data Group 2014) describes the stopping power of  35 

protons in a homogeneous material. Its integral is needed in order to find the proton range. It is not 36 

trivially integrable, however by performing series approximations one may obtain a simplified range-37 

energy relationship. Several such approximations have been suggested: The Bragg-Kleeman rule is the 38 

1st order Taylor series, and due to its simple form one may both invert and and differentiate the 39 

formula in order to find the dose curve (Thomas Bortfeld and Schlegel 1996). The Bragg-Kleeman 40 

rule for a proton’s range 𝑅0 with initial energy 𝐸 and depth dose curve −d𝐸/d𝑧 is given below: 41 



𝑅0 = 𝛼𝐸𝑝  42 

𝐸(𝑧) = 𝛼−1/𝑝(𝑅0 − 𝑧)1/𝑝 43 

− d𝐸/d𝑧 = 𝑝−1𝛼−1/𝑝(𝑅0 − 𝑧)1/𝑝−1. 44 

Here, 𝛼 and 𝑝 can be obtained from the Bethe equation or found by model fits to experimental data. 45 

Alternatively, a series of exponential terms (Ulmer 2007) has been suggested as a more accurate 46 

model for range calculations. Two separate approximations are offered to calculate 𝑅0 and 𝐸(𝑧), 47 

respectively, and the differentiation of the latter gives rise to the depth dose curve: 48 

𝑅0 = 𝑎1𝐸0 [1 + ∑(𝑏𝑘 − 𝑏𝑘 exp(−𝑔𝑘 ⋅ 𝐸0)

𝑁1

𝑘=1

] 49 

𝐸(𝑧) = (𝑅0 − 𝑧) ∑ 𝑐𝑘 exp(−𝜆𝑘(𝑅0 − 𝑧))

𝑁2

𝑘=1

 50 

−
d𝐸

d𝑧
=

𝐸(𝑧)

𝑅0 − 𝑧
− ∑ 𝜆𝑘𝑐𝑘(𝑅0 − 𝑧) exp(−𝜆𝑘(𝑅0 − 𝑧))

𝑁2

𝑘=1

 51 

The different parameters 𝑎1, 𝑏𝑘 , 𝑏𝑘 , 𝜆𝑘 and 𝑐𝑘 are described in (Ulmer 2007), and may be found by 52 

fitting the model to range-energy data. A recommendation on the number of terms was also made in 53 

the same study, where 𝑁1 = 2 and 𝑁2 = 5 would yield a good accuracy. In this work the same choice 54 

has been made. 55 

Data interpolation models 56 

When considering proton ranges in homogenenous phantoms of known elements or compounds, it is 57 

possible to use tabulated data from different experiments: however one needs to interpolate between 58 

the data if the required value pairs are not available. The same is also true for more complex 59 

geometries such as detector geometries, where the tabulated data is made during Monte Carlo 60 

simulations of varying initial proton energies. 61 

A linear interpolation is the simplest way to interpolate between two data points in a look-up-table, as 62 

a straight line is used for evaluation between values in the look-up-table. A spline interpolation is 63 

performed by calculating a (here) 3rd order polynomial function around each of the data points in the 64 

look-up-table, and stiching them together in a piecewise fashion. It is possible to extract the depth-65 

dose curve from range-energy look-up-tables by calculating the difference in range between each 66 

energy step, however the end result is a stepwise curve. 67 

A larger number of measurements at different energies are required for a interpolation-based range 68 

calculation scheme compared to the simple Bragg-Kleeman rule with two parameters or even the 69 

exponential sum from Ulmer (Ulmer 2007) with 15 parameters. On the other hand, interpolation-based 70 

calculations enables for more accurate calculations over the therapeutic span of energies. 71 

Comparison of the parameterization models 72 

150 CSDA range values for protons in water, up to therapeutic energies, are split into two groups. One 73 

training group (𝑁𝑇 = 25) is used for finding the model parameters, the remaining control group (𝑁𝐶 =74 

125) is used to evaluate the model calculations at small range intervals. After each model has been 75 

trained, it is then used to calculate the range at all the energy values in the control group. Each model 76 

calculated range is then compared to the corresponding value from the control group. 77 



Comparison of the number of data values for model training 78 

In the above analysis, the 75% percentile value of the range deviation between the calculated range 79 

and the PSTAR range has been calculated. This value is calculated for a varying number of data points 80 

used for training the different models, ranging from 𝑁𝑇 = 3 to 𝑁𝑇 = 125. 81 

Comparison of the shape of the Bragg Curve 82 

The depth dose distribution of a single proton incident on water is obtained from a differentiation of 83 

the energy-range relationship. If it is convoluted with the statistical range straggling of a proton beam, 84 

the result is the depth-dose curve for a proton beam, in contrast to the pristine depth-dose curve of a 85 

single proton. The different parameterizatons give rise to depth-dose curves of slightly different 86 

shapes. The Bragg Peak position is kept constant by using the same parameter 𝑅0 for all the models. 87 

Results 88 

The results for the training of the models is shown in Table 1 and Table 2. The results are compared to 89 

similar results in the literature. The accuracy of the proton range calculation using different models is 90 

shown in Figure 1, the training stability of the models is shown in Figure 3. 91 

 𝛼 𝑝 

This work 0.00262 MeV/cm−1 1.736 

(T. Bortfeld 1997) 0.00220 MeV/cm−1 1.77 

(Boon 1998) 0.00256 MeV/cm−1 1.74 
Table 1: The parameters for proton range calculation using the Bragg-Kleeman rule, as found in this work and as 92 
compared with others. 93 

 𝑎1 𝑏1 𝑔1 𝑏2 𝑔2 

This work 0.0081 11.782 0.0009 30.003 0.0029 

(Ulmer 2007) 0.0069 15.145 0.0012 29.844 0.0033 

      

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 

This work 29.440 11.605 5.775 6.226 2.457 

(Ulmer 2007) 96.64 25.05 8.807 4.190 9.273 

      

 𝜆1
−1 𝜆2

−1 𝜆3
−1 𝜆4

−1 𝜆5
−1 

This work 1.003 5.294 297.04 26.44 1.1223 

(Ulmer 2007) 0.098 1.245 5.700 10.65 106.73 
Table 2: The parameters for proton range calculation models using a sum of exponentials, as found in this work and 94 
as compared with others. Note that since this model is a series approximation, a number of combinations of terms will 95 
yield similar results, and as such the comparison with (Ulmer 2007) is somewhat arbitrary. 96 



 97 

Figure 1: The accuracy of the proton range calculations using different parameterization models. The range error is 98 
the relative difference between the calculated or interpolated range using the model, and the PSTAR dataset. The 99 
energies used here are from the control group, and not from the training group. 100 

 101 
Figure 2: The training stability of the models. The models are trained with different number of data points.  The more 102 
complex the model, such as the interpolated models or the sum of exponentials, the more data points are needed in 103 
order to reduce the calculation errors. The error is calculated as the 75% percentile of all the relative errors as shown 104 
in Figure 1 for each of the parameterization models.  105 

 106 



 107 

Figure 3: The depth-dose curves calculated obtained by differentiating the parameterization models. The two 108 
interpolated models as well as the Bragg-Kleeman model are seemingly identical, while the sum of exponentials model 109 
exhibits some differences close to the Bragg Peak. 110 

Discussion 111 

Overall, the spline interpolation model shows the highest accuracy. A sub-percent range calculation 112 

accuracy is shown for all models above 100 MeV, and for the spline model above 10 MeV. 113 

By using at least 20 data points for training the model, the accuracy is kept at an acceptable level, and 114 

the 75% percentile of the errors in the range calculation is at 0.1% of the range when using the spline 115 

interpolation, the linear interpolation or the sum of exponentials. Due to the low number of parameters 116 

in the Bragg-Kleeman parameterization, it is stable even when as low as four data points are used for 117 

training. 118 

For the shapes of the depth-dose curves, the data-driven methods are assumed to be the ground truth 119 

since they represent measurement data, or in the case of PSTAR, accurate calculations of the Bethe 120 

equation. Since the number of data points are limited, however, the curves created in this fashion are 121 

stepwise functions. 122 

The shapes of the depth-dose curves originating from the interpolations and the Bragg-Kleeman model 123 

are visually identical, and as such the shape of the Bragg Peak of individual protons is accurately 124 

represented by using the simple differentiated Bragg-Kleeman formula. By using the sum of 125 

exponentials the shape exhibits some artefacts due to contributions from the different exponential 126 

terms used in the sum. 127 

An application for this work is found in the range calculations for the proton telescope and digital 128 

tracking calorimeter (Pettersen et al., n.d.). A look-up-table of range-energy values is created using 129 

Monte Carlo simulations, and arbitary range-energy values are readily calculated during analysis using 130 

spline interpolation. The depth-dose curve for individual protons, from both experimental 131 

measurements and Monte Carlo simulations, are compared to the depth-dose curve originating from 132 

the differentiated Bragg-Kleeman formula which has been shown here to be an accurate 133 

representation. The result is a high accuracy of both range calculation of arbitrary energies as well as 134 

realistic parametric depth-dose curves for individual protons. 135 
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