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In this presentation:

- Summary of MC simulations & very brief overview over
analysis

* Analysis performed on different geometries
* In the end a design recommandation is made
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More details in WP1 design report & (

WP | DETECTOR DESIGN RECOMMENDATIONS

Authors: Workgroup 1 (Ilker Meric, Jarle R Selie Hesam Shafiee. Helge E S Pettersen)

The design recommendations on the Digital Tracking Calorimeter with ALPIDE sensor chips are
‘based calculations on the following properties regarding proton tracking and reconstruction qualify:

[l ol

Range uncertainty (stochastic)
Range accuracy (systematic)
Tracking efficiency

Economy (number of layers)

The different properties have been calculated using the pCT software framework on different versions
of the geometry as well as theoretical calculations

Thus work s focused on finding the optimal spacing between the sensor lavers in a range telescope for
proton CT. By considering several different values for the spacing and carrying out the amalysis as
outlaid in the benchmarking of the proof-of-concept calorimeter, metrics such as range accuracy and
range uncertainty are found for each of the designs.

MAIN FINDINGS

1

=

The Tateral size of the sensor chips should be approximately 15 x 27 cm?, depending mainty on
the inherited design from the ITS from ALICE and comparisons with other proton CT
projects. The added value of doubling the detector in vertical dimensions is small compared to
the corresponding added accuracy of doubling the longitudinal mumber of layers: It is a
software task of stitching two scans vertically. This corresponds to 90 ALPIDE chips per
layer.

. The longitudinal size of the detector should be so that the absorbing material (Al) 1s 3.5 mm

thick. This value corresponds to 41 (41.1) layers being needed to fully contain a 230 MeV
proton beam including 3 sigma range straggling. 41 x 90 = 3620 chips in total.

Using this value. the added range uncertamnty is 2 mm Water Equivalent Thickness (WET),
compared to the range straggling of 3.8 mm WET that is added to this number in quadrature.
The oscillating artifacts introduced in the range determination accuracy is kept below 0.1 mm
‘WET. The track reconstruction efficiency (fraction of fully and correctly reconstmcted proton
tracks) increases rapidly with decreasing absorber thickness. and from this perspective the
thickness should be kept below 4 mm and as low as possible.

. Any material between the two first sensor lavers. ie the aluminum carrier board. should be

kept as thin as possible and below 0.45 mm. A thicker slab lead to higher amounts multiple

Coulomb scattering. and positional errors on the phantom in excess of 0.5 mm.

UNIVERSITY OF BERGEN

submitted) thesis

A Digital Tracking Calorimeter for
Proton Computed Tomography

Helge Egil Seime Pettersen

Dissertation for the degree of philosophiae doctor (PhD)

at the University of Bergen. Norway

February 2018
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Water phantom to modulate  Sensor layers + energy absorbers
protons to lower energies with variable thickness

Proton %‘D
[ beam line ahanien

<€ >

Protons

«Active» sensor (14 um)
Glue (2 x40 um)
Absorber (2 — 6 mm)

«Passive» sensor (106 um)
PCB (130 um)

Air gap (2 mm)

One layer -
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1. The sensor consists of 40 pum Si + 10 pm Al

2. The PCB is 130 um thick (20% thinner than the MIMOSA23 prototype), but consisting of
similar materials (Cu + S102 epoxy)

3. Ag glue (80 um), same as MIMOSA23

4. Air gap of 2 mm between the layers — this 1s not vital to the results

5. The maximum beam energy is 230 MeV.

pCT - Helge Pettersen
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Analysis workflow

Pixel diffusion
Data readout Cluster Proton track
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Calibrated cluster size
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Layer 0 Layer 2 Layer 4 Layer 6

Figure 2: Track Reconstruction Example: Here
Abf39 < Af31 and the former is chosen at the sin-
gle next track segment.

pCT - Helge Pettersen
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Range resolution
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Range resolution from individual tracks

Energy deposition [keV/um]
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Range distribution per beam energy (/voxel)
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Range deviation [mm WET]
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Range uncertainty
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Oscillatory range error — Systematic uncertainty
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Oscillatory range error — Systematic uncertainty
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Compare this to the FoCal prototype...
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Fig. 7. Reconstructed ranges (Ry) of proton beams with different energies. Results from
both the MC simulations and from the experimental measurements are displayed on the
plot. The PSTAR range is displayed using a band representing the expected range
straggling. Average numbers for the deviations between Ry and (R;) as well as the
corresponding resolution (5) are presented in Section 6.3.
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Width of range distribution — stochastic uncertainty
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Fraction of correctly reconstructed tracks

Track reconstruction efficiency (old algorithm)
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New track reconstruction algorithm ...

Reconstruction efficiency with uniform beam

100,00 %
95,00 % k ——0ld algorithm
— New algorithm
90,00 %

85,00 %

80,00 % \\
75,00 % \

70,00 % \
65,00 % \

60,00 % | | | | !

0 20 40 60 80 100
Particle density (per cm2)

Fraction of tracks reconstructed corretly




» © HELSE BERGEN
~ Haukeland University Hospital

New track reconstruction algorithm ...

CPU time for reconstruction
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Some Pencil Beam considerations

Beam proﬁle lst layer

Beam profile 31st layer
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Figure 5.8: Beam profile in the DTC at two different positions. A 250 MeV pencil beam
is shown first after traversing 10 cm water, then after traversing 30 layers of the DTC.
The pencil beam is defined by the parameters o, = 4mm, o, = 2mm and an angular

spread of ~4 mrad. The red ellipse is the 20 value of the original pencil beam profile.
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Some Pencil Beam considerations

All tracks (58) Fake tracks (20%) Unused data (11%)

o, = 0, = 3 mm, 250 MeV beam degraded by 16 cm water

22
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New track reconstruction algorithm ...

Reconstruction efficiency with pencil beam
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Reconstruction efficiency with different spot sizes (o ,)
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How many layers are needed for the different
configurations?

Absorber thickness [mm] 2 25 31 3.5 4 45 5 55 6
Layers needed (230 MeV) 66.6 552 47.1 1 41.1 136.5 328 297 272 244
Layers needed (200 MeV) 528 438 374 |32.6 29 26 23.6 21.6 20

Table 5.2: Number of layers needed to contain a 230 MeV and 200 MeV beam for dif-
ferent geometries, when a necessary extra margin corresponding to a distance of three
times the range straggling is added.

25
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Scattering In first layers
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Detector size recommendations
(from pCT-WP1-Reportl)

MAIN FINDINGS

L.

The lateral size of the sensor chips should be approximately 15 x 27 ¢m®, depending mainly on
the inherited design from the ITS from ALICE and comparisons with other proton CT
projects. The added value of doubling the detector in vertical dimensions 1s small compared to
the corresponding added accuracy of doubling the longitudinal number of layers: It is a
software task of stitching two scans vertically. This corresponds to 90 ALPIDE chips per
layer.

27
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Detector size recommendations

2. The longitudinal size of the detector should be so that the absorbing material (Al) 1s 3.5 mm
thick. This value corresponds to 41 (41.1) layers being needed to fully contain a 230 MeV
proton beam including 3 sigma range straggling. 41 x 90 = 3690 chips 1n total.

Using this value, the added range uncertainty is 2 mm Water Equivalent Thickness (WET),
compared to the range straggling of 3.8 mm WET that 1s added to this number in quadrature.
The oscillating artifacts introduced in the range determination accuracy is kept below 0.1 mm
WET. The track reconstruction efficiency (fraction of fully and correctly reconstructed proton
tracks) increases rapidly with decreasing absorber thickness, and from this perspective the
thickness should be kept below 4 mm and as low as possible.

28
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Detector size recommendations

3. Any material between the two first sensor layers, i.e. the aluminum carrier board. should be
kept as thin as possible and below 0.45 mm. A thicker slab lead to higher amounts multiple
Coulomb scattering, and positional errors on the phantom in excess of 0.5 mm.

29
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Tracking layers — comparison with other
projects

30
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Scattering in first layers — HIT pRG

Theoretical and experimental comparison of proton
and helium-beam radiography using silicon pixel detectors

T Gehrke">**©,C Amato”*7, S Berke>* and M MartiSikova™>-
Phys. Med. Biol. 63 (2018) 035037 (18pp)

3.2.1. Timepix detector

The Timepix detector was developed by the Medipix2 Collaboration at CERN (Llopart ef al 2007). It isa compact
silicon pixel detector with a sensitive area of 14mm x 14mm. The application-specific integrated circuit
(ASIC) is divided into 256 x 256 pixels, which have a pitch of 55 pzm. In this work, a 300 pzm-thick silicon sensor
attached to the ASIC was used. The Timepix ASIC was thinned from 700 gm down to approximately 100 pm.
The resulting material budget of one detection layer is below a WET of 800 pm The silicon sensor was reversely

(800 um WET = 380 um Al) ’
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Scattering In first layers — PRaVDA

Silicon micro-strip sensor: each silicon micro-strip detector has a
nominal thickness of 150 pm and is made from n-in-p silicon. The
detector contains 2048 strips in total, 1024 read out on each side of
the detector by eight ASICs (see Fig. 2). Each strip has a pitch of

32
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Scattering in first layers — Lomda Linda

A Fast Experimental Scanner for Proton CT:
Technical Performance and First Experience
With Phantom Scans

The 0.4 mm

SSD thickness was also optimized for the Fermi-LAT, but sium-

ulations showed only minor advantages in terms of spatial reso-
lution to using thinner devices or double sided sensors (because

proton scattering in the object being imaged dominates).

33
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BACKUP SLIDES — ANALYSIS

34
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Charge diffusion

UNIVERSITY OF BERGEN ¢
&,
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Charge clustering model

Each proton track creates charge diffused pixel clusters

UNIVERSITY OF BERGEN ( @ 7

Deep n-well for

Readout transistors charge collection

p-doped Si

p+ doped SiO, /
AlO, substrate 36
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Figure 4.4: Examples of charge diffused pixel clusters, grouped by their cluster size (number
of activated pixels in cluster). The cluster size is shown in the corner of each figure. Note

that some of the larger clusters actually are wrongly identified smaller clusters, located very
close to each other.
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Analytical model

Measurements and simulations of MAPS
(Monolithic Active Pixel Sensors) response to
charged particles - a study towards a vertex
detector at the ILC

Lukasz Janusz Maczewski

Epitaxial layer

A anR| A 39



Calibrated cluster size
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Tracking algorithm

1. Use all hits in first layer as seeds
2. Test all seeds against hits in next layer:

1.  Evaluate: Find change in direction 8, in first sensor layer (assume parallel
beam here) against all hits in next layer

2. Compare 6, against a threshold value: If below, keep the hit in next
layergiving rise to lowest 6,: Here it’s b;.
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Tracking algorithm

For all next layers, find angular change 8; and append the hit with «lowest-
scattering» cluster.

'
SN

0;(b1) > 6;(b;) - Use b,

o
-
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Tracking algorithm

1.  When a few tracks are made from the same seed pair, find the best one using

different scoring criteria (total angular change, length, existence of Bragg Peak,
etc.)

2. Keep the track (green) and remove all hits connected to it

1 )
!
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Tracking algorithm

1. Redo the tracking on the reduced data

Suly
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Tracking algorithm

1.  Voila, all tracks are reconstructed
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Proton tracking — Accuracy

The more protons to be reconstructed at the same, the
smaller the probabillity of finding the correct track
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Finding the range

For each proton it's possible to plot proton depth vs Edep
And do model fitting with Bortfeld's Bragg Curve R = a EP

UNIVERSITY OF BERGEN [ @
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Bortfeld, T. An Analytical approximation to the Bragg curve for therapeutic proton beams. Med. Phys 24 2024-33 (1997)



