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Particle therapy - the Bragg peak position 

• Key advantage of ions: Bragg peak 
• Relatively low dose in the entrance channel

• Sharp distal fall-off of dose deposition (<mm)!

• Challenge
• Stopping power of tissue in front of the tumor 

has to be known – crucial input into the dose plan for the treatment

• Stopping power is described by Bethe-Bloch formula:

- dE/dx  (electron density) x 
ln((max. energy transfer in single collision)/(effective ionization potential)2)

• Current practice
• Derive stopping power from X-ray CT

• Problem: 
X-ray attenuation in tissue depends not only on the density, but also 
strongly on Z (Z5 for photoelectric effect) and X-ray energy
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Stopping power calculation from X-ray CT

Schaffner, B. and E. Pedroni, The precision of proton range calculations in proton radiotherapy

treatment planning: experimental verification of the relation between CT-HU and proton stopping 

power. Phys Med Biol, 1998. 43(6): p. 1579-92.
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Range uncertainties

Clinical practice:

• Single energy CT: up to 7.4 % uncertainty

How to deal with range uncertainties in the clinical routine?

• Increase the target volume by up to 1 cm in the beam direction

• Avoid beam directions with a critical organ behind the tumor

Unnecessary limitiations -> reduce range uncertainties

Estimates for advanced dose planning:

• Dual energy CT:   up to 1.7 % uncertainty

• Proton CT: up to 0.3 % uncertainty
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Proton CT



Proton-CT 
- quasi-online dose plan verification

• high energetic proton beam quasi-simultaneously with therapeutic 
beam

• measurement of scattered 
protons

• position, trajectory

• energy/range 

• reconstruction of trajectories in 3D and range in external absorber

• trajectory, path-length and range depend on 

• nuclear interactions (inelastic collisions)

• multiple Coulomb scattering (elastic collisions)

• energy loss dE/dx (inelastic collisions with atomic electrons)  

• MS theory and Bethe-Bloch formula of average energy loss in turn 
depend on electron density in the target (and ionization potentials) 

-> 3D map of electron density in target 
-> online verification of dose plan 



Proton-CT - images

• Traversing proton beam creates three different 2D maps 
 three imaging modalities 

• Transmission map 
– records loss of protons 

due to nuclear reactions

• Scattering map
– records scattering of protons off 

Coulomb potential

• Energy loss map 
– records energy loss of protons (Bethe-Bloch)

Phantom

Cecile Bopp. PhD thesis, Strassbourg, 2013



Proton-CT 

High energetic proton beam traversing the target –
intensity ~109 protons/sec 

• Detector requirements

• High position resolution  (tens of m)

• Simultaneous tracking of large particle multiplicities

• Fast readout

• Radiation hardness

• Front detector: low mass, thin sensors (50 m)

• Back detector: range resolution <1% of path-length

• Conceptual design

• Extremely high-granularity digital 
tracking calorimeter

• Technical design

• Monolithic Active Pixel Sensors (MAPS)

• Planes of CMOS sensors for tracking 
and as active layers in a sampling 
calorimeter 

prototype beam test



Silicon-tungsten sampling calorimeter
• optimised for electromagnetic showers

• compact design 4x4x11,6 cm3

• 24 layers

• absorbers:
3.5 mm of W (≈ 1 X0)
Molière radius: 11 mm

• active layers: 
MAPS – MIMOSA 23*
4 chips per layer 

-> 96 chips in total
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Digital tracking calorimeter prototype (I)

* IPHC Strasbourg



Digital tracking calorimeter prototype (II)

MIMOSA 23

• on-chip digitisation

• chip-level threshold setting

• 1 bit per pixel

• sequential row readout (“rolling shutter”)
-> pixel integration time: 642 μs

• continuous readout

• no zero-suppression

10

640 x 640 pixels

30 micron pitch Integration of 

four sensors 

per layer



Digital tracking calorimeter prototype (III)

MIMOSA 23 readout

• 39 Mpixels

• raw data rate: 61 Gb/s

• FPGA based readout and DAQ

• Spartan 6 FPGAs interfacing 
the MIMOSA chips

• Virtex 6 based DAQ
(2 GB DDR3 RAM, 
ethernet)
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Simulation results

Detector response
muons (MIP)

Photons and electrons
(e.m. shower)

protons
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Test beam results

Digital calorimeter

• particle counting method – number of hits 
should be proportional to the particle energy

• does it work for electromagnetic showers?

electrons linearity

2 GeV 5 GeV

shower
pattern

energy 

resolution

hit
distribution

14
E. Rocca, 

ICHEP 2014
http://arxiv.org/

abs/1708.05164 



Digital tracking calorimeter – rangemeter (I)

Range measuring resolution

• Stopping: proton beam tests at KVI (Groningen)

• Full prototype (24 layers, tungsten absorber)
-> validation of simulations

• Energy: from 122 to 190 MeV

• Intensity: 

≈ 1 proton per 
frame (640 μsec),
800 protons 
per spill

broad beam
spot

16

21 spills

single track in 4 layers



Digital tracking calorimeter – rangemeter (II)

Range measuring resolution

• Energy loss measurement

• hadron tracks: 
number of hits in a sensitive layer along the particle trajectory
(”cluster size”) depends (weakly) on the energy loss
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H. Pettersen



Digital tracking calorimeter – rangemeter (IV)

• Tracking of a single proton, collecting clusters along the trajectory
and fitting a Bragg curve*

19
*  Bortfeld, T. An Analytical approximation to the Bragg curve for therapeutic proton beams. Med. Phys 24 2024-33 (1997)

H. Pettersen



Digital tracking calorimeter – rangemeter (V)

• Energy/range resolution for 188 MeV protons
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H. Pettersen



Digital tracking calorimeter – rangemeter (VI)

• Range vs proton beam energy

-> good agreement between data and MC
21



Towards a clinical prototype 
– Bergen pCT Collaboration
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• Organisation

• UiB, HiB, HUS 

• International collaboration

• Utrecht

• …

• Joining forces with another pCT project

(Padova - Piero Giubilato, ERC grant iMPACT - 1.8 MEUR) – under discussion

• Financing

• Toppforsk (26 MNOK, 5 years)

• BFS (18 MNOK, 4 years)

• Helse Vest

• Next steps

• Finishing the optimisation of the design

• Production of ALPIDE chips



Towards a clinical prototype 
– Bergen pCT Collaboration
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Work packages

WP1: Simulation and design 

optimization
• Detector specifications:  Optimization of 

geometry and segmentation

• Evaluation of rate capabilities of the digital 

backend of the sensor

• Optimisation of the readout electronics 

architecture

WP2: Chip submission and sensor 

characterization
• Improved sensor and data encoding design

• Chip submission

• Testing of prototypes

WP3: Data readout
• Development and testing of readout 

electronics

• Setting up a full readout chain

• Development of firmware and software

WP4: Assembly
• Assembly of chips into HICs/staves

• Assembly of staves into layers

WP5: System integration
• Integration of layers into a compact detector

• Mechanical and electrical integration, cooling

WP6: Commissioning
• Commissioning of the PRM in beams

• Performance evaluation in a pre-clinical 

environment, i.e. with phantoms 

WP7: Reconstruction software
• Calorimeter response 

• Calorimeter track reconstruction

• Reconstruction of 3D trajectory – track vector 

matching

• 3D stopping power map



Towards a clinical prototype (I)

Optimisation of the design

• geometry

• longitudinal segmentation

• number of sensitive resp. absorber layers

• absorber

• energy degrader, mechanical carrier,
cooling medium

• material choice: Al

• thickness (2-4 mm)

24



Towards a clinical prototype (II)

Optimisation of the design

• sensors – MAPS

• ALPIDE chip 

• Design team: CCNU Wuhan, CERN Geneva, YONSEI Seoul, INFN 
Cagliari, INFN Torino, IPHC Strasbourg, IRFU Saclay, NIKHEF 
Amsterdam

• sensor for the upgrade of the inner tracking system of the
ALICE experiment at CERN

• chip size ≈ 3x1.5 cm2, pixel size ≈ 28 μm, integration time ≈ 4 μs

• on-chip data reduction (priority encoding per double column)

25
M. Magner, IFEE 2014 



Towards a clinical prototype (III)

Strategy

• Modular structure – exchangeable front layers
(tracking and absorber layers) 

• Use the existing ALPIDE chips as sensitive layers

• R&D project to tailure ALPIDE design to medical applications

• Faster charge collection and readout: 4 μs ->   < 1 ns

• Larger sensors - wafer-scale integration by stitching

• Thinner sensors (in case of tracking station between nozzle and patient)
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Hadron therapy in Norway 

Ongoing discussion in Norway on how many particle 
therapy facilities are to be build

What can we hope for in Bergen?

• Combined proton and carbon facility

• State-of-the-art technology

• fast scanning/repainting 
system

• active energy modulation 

• beam gating system

• several treatment rooms

• superconducting gantry
for carbon ions

University Hospital



This is the end
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