Radiation Environment

1 MeV Neutron Equivalent Fluence

>20 MeV Hadrons Fluence

Total deposited dose

---> Lifetime and health of detector and surrounding FPGAs

Contents

- Simulation setup (FLUKA)
 - Proton CT and Proton Therapy setting
 - Scoring quantities offered by FLUKA
 - Dose (Total dose, energy per unit mass) [rad]
 - HADGT20M (Fluence of hadrons with energies > 20 MeV) $[cm^{-2}]$
 - SI1MEVNE (Silicon 1 MeV neutron equivalent fluence) $[cm^{-2}]$
- Radiation hardness and some typical numbers
- Normalization of results (clinical setting)
- Results
 - Two dimensional fluence plots of Hadrons and Neutrons around detector (top-down view)
 - HADGT20M and SI1MEVNE fluence with respect to distance from center of the detector
 - Total dose to detector chips
 - Table of results and expected lifetimes and health of the detector and FPGAs

Simulation setup 1

Proton CT

- 230 MeV proton beam
- Proton beam has a cross-section
 of 22 x 14 cm²
- Detector cross section is 28 x 18 cm²
- 30 *cm* thick water phantom

Proton Therapy

- 147 174 MeV Proton beams
- Proton beam has a cross section of 5 x 5 cm²
- 30 cm thick water phantom with a 5 x 5 x 5 cm³ target volume located at 15 - 20 cm depth.

Top-down view of the simulation geometries

Spread-out Bragg peak (SOBP) covering the target volume

Simulation setup 2

FPGAs (Field-Programmable Gate Arrays)

- Dimension of the FPGA is 10 cm x 0.5 cm x 18 cm
- Located next to the detector at 10 cm, 50 cm, 100 cm and 200 cm distance relative to the edge of detector

Wide view of the simulation geometries along the beam-axis

HADGT20M

«Fluence of hadrons with energy > 20 MeV $[cm^{-2}]$, unstable hadrons of lower energies are also counted»

SIIMEVNE

Fluence

quantities

«Silicon 1 MeV neutron equivalent fluence $[cm^{-2}]$ » Hadron fluence folded with a displacement damage function (D(E)) and normalised to the displacement damage by 1 MeV neutrons in silicon.

Damage categories:

CategorySingle EventSingle Event Upseteffects(SEU)		Category	Effect	Scales with simulated/measured quantity	
		Single Event Upset (SEU)	Memory bit flip (soft error) Temporary functional failure	HADGT20M [cm ⁻²] (+/or HEHAD-EQ, THNEU-EQ)	
	(Random in time)	Single Event Latchup (SEL)	Abnormal high current state Permanent/destructive if not protected	HADGT20M [cm ⁻²] (+/or HEHAD-EQ)	
	Cumulative effects	Total Ionizing Dose (TID)	Charge build-up in oxide Threshold shift & increased leakage current Ultimately destructive	DOSE [GeV/g] -> stricly IONIZING only!	
(Long term)		Displacement damage	Atomic displacements Degradation over time Ultimately destructive	SI1MEVNE [cm ⁻²] {NIEL}	

Radiation hardness

[3] M. Mager. ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade.
[4] H. Quinn. Radiation effects in reconfigurable FPGAs.

Total Ionizing Dose (TID) and Non-Ionizing Energy Loss (NIEL)

- Detector chip (ALPIDE MAPS) [3]
 - TID radiation hardness 2.7E6 rad
 - NIEL radiation hardness $1.7E13 n_{eq}/cm^2$
- Typical FPGA [4]
 - TID radiation hardness 10 krad (conservative number)

Single Event Upset (SEU) – bitflips in FPGA

- Typical FPGA has a sensitivity between 10^{-14} and $10^{-15}cm^2/bit$ (Single Event Upset cross section)
- # SEU = Cross section * Hadron fluence * configuration memory

Normalization

 R. P. Johnson, et al. A Fast Experimental Scanner for Proton CT: Technical Performance and First Experience With Phantom Scans.
 J.R. Sølie. A Comparative Study of Radiation Environment and Secondary Dose Production in a Particle Therapy Treatment Room Applying Proton, Helium and Carbon Ion Beams.

Proton CT

- Number of protons used for a single image [1]:
 3.15E8
- Yearly workload (clinic):
 25 images per day, 235 days per year
- Number of protons involved in a year: $3.15E8 \times 25 \times 235 = \underline{1.851E12}$

Proton Therapy

- Number of protons in a single 2Gy treatment fraction [2]:
 5.815E10
- Yearly workload (clinic):
 25 treatments per day, 235 days per year
- Number of protons involved in a year: $5.815E10 \times 25 \times 235 = 3.416E14$

Hadron Fluence Overview plots

Proton CT (normalized to per year) Overview of Hadron fluence around detector (pTherapy) Overview of Hadron fluence around detector (pCT) 10¹⁴ 200 200 10^{14} 10¹³ 10¹³ 150 150 x-axis) 10^{12} 10¹² Width of room [cm] (along x-axis) J 10¹¹ [a ea 100 10^{11} 100 Width of room [cm] (along 0 -20 -100 -120 Hadron fluence [n/cm²/y 10^{10} 10^{10} [n/cm²/ 50 50 10⁹ 10⁹ Hadron fluence 10⁸ 0 0 10⁸ 10^{7} 10^{7} -50 10^{6} 10⁶ 10⁵ 10⁵ -100 10⁴ 10^{4} -150 10³ 10³ -200 10^{2} -200 10² -50 100 150 200 250 300 -100 50 -50 50 100 150 -100 200 250 300 0 Length of room [cm] (along z-axis) Length of room [cm] (along z-axis)

Proton Therapy (normalized to per year)

Normalization: 1.851E12

Normalization: 3.416E14

Neutron Fluence Overview plots

Proton Therapy (normalized to per year)

Normalization: 1.851E12

Proton CT (normalized to per year)

Normalization: 3.416E14

Fluence with respect to lateral distance from detector

HADGT20M (yearly workload)

10^{11} 10^{11} Proton therapy Proton therapy Proton CT Proton CT 10^{10} 10^{10} 4.83E9 1.94E9 10⁹ Fluence [cm⁻²/year] Fluence [cm⁻²/year] 10⁹ ' 4.18E8 1.39E8 10^{8} 2.98E7 9.51E7 3.27E7 8.24E7 10⁸ 5.83E6 2.11E7 10^{7} 2.05E6 6.32E6 10⁷ 106 4.13E5 1.40E6 8.06E4 10⁶ 105 3.01E5 104 105 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 10 10 0 0 Distance from center of detector [cm] Distance from center of detector [cm]

> 20 MeV Hadron fluence

SI1MEVNE (yearly workload)

Silicon 1 MeV neutron equivalent fluence

Total dose to detector chips

Total dose to chip inside layer #

Neutron equivalent fluence inside detector

Lifetime of detector

Lifetime (Normalized and cumulated TID and NIEL)

- Roughly 1000 rad inside the Bragg-peak per year
- Assume Bragg-peak is located in the same chip every time
- Radiation hardness of the ALPIDE chip is 2.7E6 rad
- NIEL radiation hardness $1.7E13 n_{eq}/cm^2$

	Number of years before reaching the TID limit		Number of years before reaching the NIEL limit
Proton CT	2700 years	Proton CT	2276 years
pCT+ pTherapy	2450 years	pCT+ pTherapy	614 years

Lifetime of FPGAs

Total dose deposited in the FPGAs per year [rad/year]

	FPGA10	FPGA50	FPGA100	FPGA200
Proton CT	0.28	9.8E-3	2.2E-3	4.7E-4
pCT + pTherapy	6.033	0.56	0.15	0.04

• Radiation hardness of a typical FPGA is 10 krad

	Number of years before reaching the radiation hardness limit [yr]			
	FPGA10	FPGA50	FPGA100	FPGA200
Proton CT	35714	1.02E6	4.54E6	2.13E7
pCT+ pTherapy	1657	17857	66666	250000

FPGAs health (# SEU/year)

Single Event Upsets

Assume typical FPGA single event upset cross section of $10^{-14} cm^2/bit$

Assume 80 Mbit configuration memory

• # SEU = Cross section x configuration memory x Hadron fluence

	Number of Single Event Upsets per year				
	FPGA10	FPGA50	FPGA100	FPGA200	
Proton CT	26	2	0.3	0.06	
pCT+pTherapy	1550	110	24	5	

Conservatively, every ten bitflip will cause a functional error in the FPGA

Thank you for your time

Special thanks to: Ketil Røed (UiO) Ilker Meric (HVL) Helge E.S. Pettersen (HUS, UiB)

> Jarle Rambo Sølie Email: jars@hvl.no

FPGAs health (Hadron Flux)

>20MeV Hadron flux

	Number of >20 MeV Hadrons per cm^2 per primary proton [1/cm^2/primary]			
	FPGA10	FPGA50	FPGA100	FPGA200
Proton CT	1.68E-5	1.09E-6	2.221E-7	4.355E-8
pCT+pTherapy	2.22E-5	1.48E-6	3.07E-7	6.06E-8

• Assume intensity of proton beam to be: 1E9 protons/sec

	Flux of >20 MeV Hadrons per cm^2 [1/s/cm^2]			
	FPGA10	FPGA50	FPGA100	FPGA200
Proton CT	16751	1085	221	44
pCT+pTherapy	22208	1485	307	61

FPGAs health (# SEU/s)

Single Event Upsets per second

- Assume typical FPGA single event upset cross section of $10^{-14} cm^2/bit$
- Assume 80 *Mbit* configuration memory
- Assume intensity of proton beam to be $1E9 \ protons/sec$
- #SEU/s = Cross section x configuration memory x Hadron flux

	Number of Single Event Upsets per second [1/s/cm^2]				
	FPGA10	FPGA50	FPGA100	FPGA200	
Proton CT	0.013	8.7E-4	1.8E-4	3.5E-5	
pCT+pTherapy	0.017	1.2E-3	2.5E-4	4.9E-5	

Conservatively, every ten bitflip will cause a functional error in the FPGA

Total dose to detector with varying phantoms

