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ALPIDE ALICE PIxel DEtector

AGORFIRM AGOR Facility for Irradiations of Materials

C++ A programming language

CBCT Cone Beam Computed Tomography

CERN European Organization for Nuclear Research

CMOS Complementary metal–oxide–semiconductor, active pixel detectors with
integrated electronics.

CPU Central Processing Unit

CSDA Continuous Slowing Down Approximation of the proton range.

CT Computed Tomography

DAQ Data Acquisition

DTC Digital Tracking Calorimeter, a detector concept described in this work.

ENC Equivalent Noise Charge

FDK The volumetric CT reconstruction algorithm by Feldkamp, Davis, and
Kress.

FLUKA FLUktuirende KAskade, a Monte Carlo software application

FoCal Forward Calorimeter, a future electromagnetic shower calorimeter for
the ALICE experiment.

FPGA Field Programmable Gate Array, a device for high speed data processing.

GATE Geant4 Application For Tomographic Emission, a Monte Carlo software
application that simplifies the usage of Geant4.
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Abstract

Cancer is a destructive disease, in which tumor cells grow out-of-control, halting organ
function. Its treatment is threefold: Radical surgery, chemotherapy and radiation therapy.
Their relative usage is determined by cancer type, stage, organs at risk adjacent to the
tumor and progression.

There has been a significant increase in the number of cancer patients treated with
radiation therapy using particle therapy in the recent decades worldwide. Short term
and long term treatment-induced side effects are reduced when applying particle therapy
due to the superior dose conformality compared to conventional radiation therapy using
photons. The particle species commonly applied during particle therapy is the proton.

Proton therapy as of today is performed with the delivery of pre-calculated dose plans
for each patient: the applied dose plans are made based on x-ray computed tomography
(CT) images. The CT images are reconstructed based upon photon interaction with mat-
ter, thus a conversion is required for calculating the Relative Stopping Power for how
the protons traverse and deposit dose in the patient’s body during proton therapy. This
conversion procedure introduces range uncertainties typically in the order of 2%–3%,
corresponding to 4–6 mm at a treatment depth 20 cm into the patient.

A proton CT system would yield a means of direct calculation of the RSP map in the
patient. During a proton CT scan, a high-energy proton beam is directed at the patient
and the proton beam must have sufficient energy to completely pass through the patient
being imaged. The protons’ residual energies are measured after they have traversed
through the patient and into a detector behind to the patient. The information about the
residual energy from each proton can then be used, together with the proton’s estimated
path through the patient, as a basis for reconstructing a volumetric RSP.

In this thesis, the feasibility of using a purely pixel-based detector, a so-called Digital
Tracking Calorimeter (DTC), for proton CT purposes is investigated and its performance
quantified through experiments and Monte Carlo simulations. The DTC is designed for
tracking and measuring the range and energy of individual protons in a proton beam.

The DTC consists of multiple layers of semiconductor pixel sensors with a digital
readout, interleaved with a passive absorber material for energy degradation. The sensor
chips are considered near optimal for use in the tracking, due to their data processing
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capacity at the required readout speed, the high granularity of such a detector system and
also due to their short radiation thickness. The requirement to this part of the detector is
that it must be able to allow for reconstruction of a large amount of proton tracks in each
data readout cycle, enabling high proton rate capabilities.

The DTC was originally designed for the reconstruction of high-energy electromag-
netic showers for the Forward Calorimeter project in the ALICE experiment at CERN.
The presented prototype forms the basis for a proton CT system using a single pixel-
based technology for both tracking and calorimetry. This advantage simplifies the setup
and reduces the cost of a proton CT system assembly, and it is a unique feature of the
Digital Tracking Calorimeter concept.

Measurement data from the AGORFIRM beamline at KVI-CART in Groningen in
the Netherlands and Monte Carlo simulation results are used in order to develop a proton
tracking algorithm for the estimation of the residual ranges of a high number of concur-
rent proton tracks.

The range of the individual protons can with the first prototype be estimated with a
range resolution of 6–25 mm Water Equivalent Thickness. This relatively low achieved
range resolution is expected due to the original design goal of the prototype. The readout
system for this prototype is able to handle a proton intensity of 1 million protons/s by
using 500 concurrent proton tracks in each readout frame, which is comparable to present
similar prototypes.

A next prototype of the proton CT setup using theDTC is at present in the construction
stage. ADTC further optimized for use in a proton CT systemwill utilize next-generation
Monolithic Active Pixel Sensors with larger sensor areas and a hundredfold increase in
readout speeds. The developed proton CT analysis framework is applied on a variety
of possible DTC geometries for the next prototype. The potential design choices are
evaluated on basis of the reached range accuracy and range uncertainty as well as of the
track reconstruction efficiency. A design recommendation is reached where the proposed
DTC will have 3.5 mm thick aluminum absorber slabs between each sensor layer.

Some of the tools applied in this thesis for the purpose of proton range calculation
have been validated through comparison studies: First, different MC programs are com-
pared to each other and to available experimental data. Secondly, the accuracy and us-
ability of several available proton range calculation models are evaluated through their
capability of reproducing tabulated energy-range proton values. An accurate model is
found and applied throughout this thesis for proton range reconstruction purposes.
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Denne teksten ble opprinnelig publisert i Fra Fysikkens Verden sammenmed D. Röhrich.

Partikkelterapi er en målrettet kreftbehan-
dling som er under planlegging i Norge.
Partikkelterapi setter store krav til nøyak-
tig diagnostikk –– og i Bergen jobber en
forskningsgruppe med å utvikle proton-
tomografi, som vil bidra til en mer skånsom
partikkelterapi.

Stråleterapi

Stråleterapi er en behandling som gis til
om lag halvparten av alle kreftpasienter
i Norge. Sykehus i Norge har tilbydd
stråleterapi i form av høyenergetisk rønt-
gen (og elektroner) siden Haukeland Syke-
hus fikk installert Odd Dahls van de Graaff-
generator, også kjent som “Høyvolten”, i
1942. Partiklenes vekselvirkninger ionis-
erer molekyler i pasienten, og de ladde
molekylene (“frie radikaler”) kan brekke
opp DNA-strukturen i kreftcellene. God
stråleterapi er å levere ioniserende stråling
primært mot kreftsykdommen, og begrense
uønsket bestråling av friskt vev.

De siste tiårene har det vært økning
i bruk av protoner og tyngre ioner innen
stråleterapi. Ideen om å bruke ioner stam-
mer fra 1946, og mange eksperimentelle

fysikklaboratorier har behandlet pasienter
siden den gang. Første sykehus-baserte
protonsenter ble bygget i 1990 ved Loma
Linda utenfor Los Angeles i California. I
dag finnes 69 sentre på verdensbasis, og
over 150 000 pasienter har fått behandling
med protoner og tyngre ioner. Sverige åp-
net protonsenteret Skandionkliniken i Up-
psala i 2015, og Dansk Center for Partikel-
terapi i Aarhus satser på å behandle første
pasient med protoner i 2018. I Norge utar-
beider nå de fire helseregionene en plan for
å bygge to sentre for partikkelterapi — i
Bergen og i Oslo.

Figur 1: To behandlingsplaner for en
svulst i lungene, her rett under hjertet i ly-
segrått. Rød farge viser terapeutisk dose.
Venstre: Konvensjonell stråleterapi med
fotoner. Legg merke til “lavdose-badet”
i lungene og hjertet. Høyre: Protonter-
api: Protonstrålen stopper rett etter svul-
sten, og det blir gitt mindre dose til det om-
liggende friske vevet. Fra G. M. Engeseth
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ved Haukeland Universitetssykehus.

Innen konvensjonell stråleterapi med fo-
toner leveres stråledose i en eksponen-
tielt fallende dosegradient gjennom pasien-
ten. Stråleterapauter bestråler pasienten fra
ulike vinkler: Da vil man oppnå et om-
råde i svulsten med høy dose, og et såkalt
lavdose-bad til det friske vevet. Innen kon-
vensjonell stråleterapi med høyenergetisk
røntgenstråling leveres stråledose i en ek-
sponentielt fallende dosegradient gjennom
pasienten: Det er den naturlige oppførse-
len til røntgenstråler som gradvis avsetter
energi i vevet. Stråleterapeuter bestråler
pasienten fra ulike vinkler: Da vil man
oppnå et område i svulsten med høy dose,
og et såkalt lavdose-bad til det friske vevet.
I dag prøver en å erstatte røntgenbestråling
med partikkelbestråling der det er mulig.
Fordelen med partikkelterapi er at man be-
grenser strålebruken til det friske vevet,
og reduserer risikoen for senskader. Figur
1 sammenlikner to behandlingsplaner, gitt
med konvensjonell høyenergetisk røntgen
og med protoner. Som kjent er protonet en
positivt ladd partikkel med masse om lag
som ett hydrogenatom, 1,67× 10−27 kg.

Protonets dans mot svulsten

Under partikkelterapi bestråles pasienten
med protoner (eller tyngre ioner) som grad-
vis bremses ned i vevet. Partiklene ionis-
erer molekyler i bein, fett og muskel: Jo la-
vere hastighet partiklene har, desto lengre
tid har de på ioniseringsprosessen, og jo
høyere er energitapet innover i vevet. Re-

sultatet er et skarpt avgrenset område i svul-
stenmed høy ioniseringskraft og dose, hvor
alle protonene stopper helt opp. Effek-
ten ble oppdaget i 1903 av W. H. Bragg,
og høydose-området kalles forBragg peak.
Dypere enn Bragg peak avgis det prak-
tisk talt ingen dose, siden primærstrålen har
blitt bremset ned (for tyngre ioner som kar-
boner, derimot, kan prosjektilene brekke
opp i fragmentermed lengre rekkevidde, og
da avgis det noe dose bak Bragg peak).

Denne prosessen er formulert i Bethe-
likningen, som finner protonets stoppekraft
S (her i ikke-relativistisk tilnærming):

S =
4πnez

2

mev2
·
(

e2

4πϵ0

)2

· ln 2mev
2

I
,

hvor ne og I er hhv. vevets elektrontetthet
og gjennomsnittlige ioniseringspotensiale.
Videre er me elektronets masse, v og z er
hhv. hastigheten og ladningen til prosjek-
tilet og e,ϵ0 er konstantene for hhv. elek-
tronladningen og vakuumpermittiviteten.

En av utfordringene innen partikkelter-
api er å beregne hvordan man skal bestråle
svulsten. Medisinske fysikere og dose-
planleggere på sykehus må finne ikke bare
den beste vinkelen å bestråle fra, men også
hvilken energi partiklene må ha.

Vevets sammensetning

En protonstråle med en energi på 130 MeV
stopper etter 13 cm i fett, 12 cm i muskel
eller 7 cm i ben. Da er det viktig å vite
hva som ligger mellom strålerøret og svul-
sten! En liten feilberegning kan føre til
store mengder stråling til friskt vev, og
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en svulst som slipper unna. Skjelett kan
komme inn i partikkelbanen ved puste-
bevegelser, pasienten kan ha gått ned en
buksestørrelse siden doseplanen ble god-
kjent, eller svulsten kan ha krympet siden
sist. Slike naturlige hendelser, som ikke en-
drer dosenivået med mer enn få prosent un-
der fotonterapi, spiller her en stor rolle.

For å kunne beregne nøyaktig hvor pro-
tonstrålen stopper i pasienten, trenger man
et godt kart over protonets stoppekraft i
pasienten. Protonets stoppekraft avhenger,
i tillegg til energien, proporsjonalt av elek-
trontettheten og logaritmisk av ioniser-
ingspotensialet i vevet. Det så vi gjen-
nom den tidligere nevnte Bethe-likningen.
Den er relativt enkel å beregne analytisk,
men krever kjennskap til de to faktorene:
Vanligvis leses ioniseringspotensialet ut fra
en tabell: for bein, muskel, vann, luft,
osv. Hvordan kan man så finne elektrontet-
theten? Magnetresonsanstomografi (MRI)
måler tettheten av protoner, mens rønt-
gentomografi (eller røntgen-CT, for “com-
puted tomography”) måler dempningskoe-
ffisienten for røntgenfotoner. Dempn-
ingskoeffisienten er den samlede effekten
av fotoelektrisk absorpsjon, Rayleigh- og
Comptonspredning, og signalet er sterkt
avhengig av atomnummeret til materialet
(røntgenfotoner har energier på mellom 20
og 140 keV).

Røntgen-CT

En røntgen-CT fungerer ved å bestråle
pasienten med en vifteformet røntgenstråle

mens integrerende CMOS-detektorer måler
den (varierende) gjenværende intensiteten
strålen har etter å ha passert pasienten. Jo
mer pasient, jo mindre gjenværende inten-
sitet! Både detektor og røntgengenerator
roterer rundt pasienten, og etter én rotasjon
kan man danne et tynt snittbilde av pasien-
ten (derav navnet tomografi, hvor greske
tomos betyr snitt). Siden røntgenstråler føl-
ger rettlinjede baner blir bilderekonstruk-
sjonen relativt enkel.

For å beregne protonets stoppekraft
brukes slike snittbilder fra en røntgen-CT:
En CT-skanner kalibreres til oppgaven ved
å avbilde en 32 cm stor sylindrisk plast-
skive med ulike innsatser, alle i forskjel-
lige tettheter og materialer med kjent elek-
trontetthet. Med Bethe-likningen kan man
også beregne innsatsenes stoppekraft. Et
slikt objekt kalles for et fantom, og er et
vanlig verktøy for å karakterisere, kon-
trollere og kalibrere CT-maskiner. Ved å
avbilde de ulike innsatsene kanman lage en
kalibreringskurve mellom dempningskoe-
ffisienten og stoppekraften. Dessverre har
ikke denne kurven en enkel form, og det
vanlig å anta at den består av stegvise rette
linjer: Se Figur 2 for et eksempel på en
slik kalibreringskurve. Merk at kurven bare
gjelder maskinen (og innstillingen) den er
kalibrert for, siden ulikheter i røntgenspek-
trum og detektorrespons kan påvirke kali-
breringen.
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Figur 2: Kalibrasjonskurven mellom
protonets stoppekraft og dempningskraft
(“Hounsfield Units”). Laget med data fra
U. Schneider et al. Physics in Medicine
and Biology 41 (1):111 (1996).

Denne kalibreringskurven legges så inn
i programvaren for behandlingsplanleg-
ging, som omformer pasientens CT-bilder
til stoppekraft, og rekkevidden til pro-
toner kan beregnes enkelt. Resultatet
av en slik kalibreringsprosess er en to-
tal usikkerhet i protonrekkevidden på 2%–
3 %. Mesteparten av den usikkerheten
kommer fra tabelloppslaget av ioniser-
ingspotensialet.

Den kraftige gradienten til protonstrålen
gjør at man i teorien kan bestråle vol-
umer tett opptil kritiske organer som hjerte
og synsnerve, men usikkerheten i proton-
rekkevidden krever økte marginer, dvs. at
man øker området som bestråles slik at
svulsten er garantert riktig stråledose selv
med usikkerhet i beregningene. Det leg-
ger begrensninger på hvor tett opptil kri-
tiske organer man kan behandle, og øker
den totale dosen til friskt vev. En nøyaktig
behandling krever nøyaktig diagnostikk!

Proton-CT

Ideen om å måle vevets sammensetning di-
rekte med protoner har eksistert siden 50-
tallet: Dersom en protonstråle har høy nok
energi til å komme helt gjennom en pasient,
er det også mulig å måle den gjenværende
energien til protonene etter de har kommet
ut igjen av pasienten. Da kan man regne ut
den gjennomsnittlige stoppekraften langs
den antatte protonbanen gjennom pasien-
ten. Måler man mange nok ganger, og
fra ulike vinkler, slik at de ulike pro-
tonbanene dekker hele pasienten kan man
rekonstruere et nøyaktig volumkart over
stoppekraften til pasienten. Nøyaktigheten
øker drastisk i forhold til volumkartet
som er beregnet fra røntgen-CT-bildene,
og det blir mulig å redusere behandlings-
marginene og følgelig også pasientens sen-
skader.

Figur 3: Et hodefantom rekonstruert
med data fra (venstre) en proton CT og
(høyre) en røntgen CT. Volumbildet fra
proton CT ble rekonstruert ved hjelp av
rundt 85 millioner protonbaner. Fra
http://medicalphysicsweb.org/cws/
article/research/68766

Et proton-CT opptak skjer separat fra
selve strålebehandlingen, men siden pro-

http://medicalphysicsweb.org/cws/article/research/68766
http://medicalphysicsweb.org/cws/article/research/68766
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tonene ikke stopper i pasienten, blir ikke
stråledosen mye høyere enn fra en vanlig
røntgen-CT: Bragg peak ender opp i detek-
toren.

I motsetning til de rettlinjede røntgen-
strålene, vil protonene oppleve mange små
avbøyninger i form av multippel Coulomb-
spredning mens de flyr gjennom pasienten.
For å rekonstruere den nå buede protonba-
nen må man måle posisjon og retning til
hvert enkelt proton både før og etter pasien-
ten. Dette krever et sett med posisjonsde-
tektorer med høy oppløsning og rask elek-
tronikk. Energien til hvert enkelt protonmå
også måles, og flere detektorer er foreslått
for denne oppgaven: Ulike typer scintilla-
torer, sammenkoblede ioniseringskamre og
sporingskalorimetre.

Flere forskningsgrupper har laget
proton-CT-prototyper, og totalt har åtte
ulike prototyper blitt konstruert på verdens-
basis. Først ut var en gruppe ved Loma
Linda, som i dag har publisert gode resul-
tater for sin løsning. Den baserer seg på
silisium-stripedetektorer for å spore pro-
tonene før og etter pasient, og en plastscin-
tillator segmentert i dybden for å måle den
gjenværende protonenergien etter pasien-
ten. Se et eksempel på et rekonstruert hode-
fantom med data målt i deres detektor i
Figur 3.

Proton CT i Bergen

I Bergen foregår nå et samarbeidsprosjekt
mellom UiB, Høgskulen på Vestlandet og
Haukeland Universitetssykehus med mål

om å utvikle et proton-CT-system basert på
teknologi fra høyenergifysikk.

Fantom 

Sporingsdetektorer: 

Måler protonretning 

før og etter pasient 

Protonene treffer 

pikseldetektorer innover 

i sporingskalorimeteret 

Sporingskalorimeter: Lagdelt 

sensor og energiabsorbator 

Multippel Coulomb- 

spredning i fantomet 

Strålelinje 

Figur 4: Oppsettet for en proton CT med
sporingskalorimeter.

En lagdelt pikseldetektor som vist i Figur
4 skal kunne spore tusener av protonbaner
samtidig. Den er basert på sampling-
prinsippet, hvor partikler bremses ned ved
hjelp av et absorbatormateriale mellom
hvert sensorlag. Den ble opprinnelig
utviklet som en prototype på et elektro-
magnetisk kalorimeter for å telle partik-
ler i foton- og elektrondusjer ved ALICE–
eksperimentet ved CERN. Forskningsgrup-
pen i Bergen ønsket å undersøke om
sporingskalorimetre kan brukes i en proton-
CT.

Ved å bruke data fra sporingskalorime-
teret kan vi kombinere rekonstruksjon av
samtidige protonbaner og modeller for pro-
tonets energiavsetning. Målet er å finne
rekkevidden til hvert proton med høy
nøyaktighet. Rekkevidden i vann,R, svarer
til opprinnelig energi E0 gjennom Bragg-
Kleeman-forholdet

R ≃ 0,022E1,77
0 .
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Figur 5: Energiavsetningen til individu-
elle protonbaner, med forventet energi 188
MeV. Hvert datapunkt svarer til dybden
hvor protonet har truffet et sensorlag. En
Bragg-kurve-modelltilpasning er vist ved
den røde kurven.

I Figur 5 vises energiavsetningen for én
protonbane, som har blitt rekonstruert sam-
men med flere hundre andre protoner i
én detektorutlesning. Gjennom studier av
både eksperimentelle data målt ved KVI-
CART i Groningen, Nederland og Monte
Carlo-simuleringer, har vi funnet at pro-
totypen på sporingskalorimeteret svarer til
forventningene: En energioppløsning på 4
% av rekkevidden, samt muligheten for å
måle 1 million protoner i sekundet.

Veien mot klinikken

I den nære fremtid vil gruppen i Bergen
samarbeide om å utvikle, konstruere
og evaluere den neste prototypen av
sporingskalorimeteret. Samarbeidet med
ALICE fortsetter, og detektorbrikker fra
ITS-detektoren skal bidra til at den neste
prototypen får en meget hurtig og effek-

tiv datautlesning og elektronikk. De ulike
samarbeidspartnerne er tildelt midler fra
TOPPFORSK, Bergens forskningsstiftelse
og Helse Vest, og ansetter flere doktor- og
postdoktorstipendiater de neste årene med
mål om å utvikle prototypen som et klinisk
hjelpemiddel.

Når det første partikkelterapisenteret
bygges i Norge (og i Bergen) i løpet av de
nærmeste årene, enten med protoner eller
«fremtidsrettede» tyngre ioner, vil pasien-
ten få tilgang til en skånsom, effektiv og ut-
prøvd kreftbehandling. En proton-CT i be-
handlingsrommet vil øke treffsikkerheten
til en allerede treffsikker behandling gjen-
nom å redusere behovet for å «tippe» på
pasientens vev.

Likevel – det er nesten umulig å si når
nytt medisinsk utstyr når sitt endelige mål:
Pasienten.

Videre lesning

• Poludniowski, G. et al. Proton Radio-
graphy and Tomography with Appli-
cation to Proton Therapy. Br. J. of
Radiol. 88, 1053 (2015): 20150134

• Pettersen, H.E.S. et al. Proton Track-
ing in a High-Granularity Digital
Tracking Calorimeter for Proton CT
Purposes. Nucl. Instr. and Meth. in
Phys. Res. A 860C (2017): 51–61.

• Avhandlingen du nå holder.
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Chapter 1

Introduction

1.1 Proton Therapy

Cancer is a destructive disease, in which tumor cells grow out-of-control, halting organ
function. Its treatment is threefold: Radical surgery, chemotherapy and radiation ther-
apy. Recently there has been an important development of immunotherapy, in which
the mechanisms of our body enters as a part of the cancer treatment in combination with
the other treatment modalities. Their relative usage is determined by cancer type, stage,
organs at risk adjacent to the tumor and progression.

In the recent decades, there has been a significant increase in the number of cancer
patients treated with proton and carbon ion therapy worldwide. Treatment with protons
and ions, referred to as particle therapy, is an alternative toX-ray photon therapy formany
cancer patients. More than 174 000 patients have been treated with particles worldwide
per 2017 (Jermann, 2017). The increase in the number of patients treated with particle
therapy during the recent decades is due to a tremendous development of facilities and
medical-technical equipment.

Many hospitals are now considering particle therapy when planning their future radi-
ation therapy departments: this is in part due to the emergence of novel, more econom-
ically feasible clinical particle facilities, and in part motivated by results from clinical
studies that demonstrate improved outcome for many patient groups receiving radiation
treatment with proton and carbon ions. The main advantages of particle therapy com-
pared to conventional photon therapy can be said to be threefold:

i) Less total dose: The patient undergoing particle therapy will receive less dose to
normal tissue and organs around the tumor, compared to the situation during photon
therapy. The sparing of normal tissue will reduce the unwanted side effects from
the radiation treatment, both in the short run (during treatment and recovery), and
in the long run with an expected improvement of the patient’s Quality of Life in the
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Figure 1.1: The different depth dose distributions from photons and protons, as a func-
tion of depth in water (Filipak, 2012).

decades post-treatment. This different total dose deposition in the patient can be
seen from the different depth dose distributions of the two different radiation types,
shown in Fig. 1.1. Put in context, two dose plans using the respective radiation
types are compared in Fig. 1.2.

ii) Improved tumor control: The improved dose distribution from protons and heavy
ions will enable improved tumor control in many situations. This is due to the sharp
dose delineation between the tumors to be irradiated and healthy tissue, as well as
the possibility coupled to this for an escalation of the dose delivered to the target
volume. Compared to photon irradiation there is an enhanced biological effect of
heavier ions in tissue in the target volume region where the tumor is located.

iii) Precise dose delivery: The delivery techniques emerging in particle therapy yields
a more precise dose delivery in the patient than with photon therapy. These delivery
techniques include fast scanning particle beams with online feedback loops, which
are systems enabling swift adjustment of the particle beam energy and scanning
position based upon rapid measurements of the dose deposited in the patient during
treatment.

The advantages of particle therapy translate into a significantly reduced number of pa-
tients suffering from side effects from their radiation treatment cure (Dionisi and Ben-
Josef, 2014; Leeman et al., 2017). Amongst these are a reduction of the number of
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Figure 1.2: A comparison between two dose plans for irradiation of a paravertebral
sarcoma in the lung, overlaid on CT images. Left: (conventional) Intensity Modulated
Radiation Therapy with photons. Right: Intensity Modulated Proton Therapy. Note
the difference in volume between the low dose regions (the so-called low dose bath)
visualized as blue areas, substantially smaller in the proton plan. Both plans are from
G. M. Engeseth at Haukeland University Hospital, the plans are made using the Aria
(version 11) dose planning system (Varian Medical Systems, CA, USA).

patients developing secondary cancers from the irradiation, a reduction of damage to
normal tissue and less damage to nearby organs.

This is of special concern for children, who, in their growth phase in life, are espe-
cially sensitive to radiation exposure, and in situations with tumors located critically near
sensitive organs – relevant examples are found in the head and neck region and around
the central nervous system, as well as for breast and lung cancers.

There is a continuous ongoing international effort with clinical studies and clinical
research in order to obtain improved knowledge about the clinical effect and efficacy
of particle therapy compared to photon therapy. The process of demonstration of the
relative use of particle therapy will last for decades to come since the core advantages of
particle therapy is the potential for reduction of unwanted side effects, often not visible
until years and decades post-treatment.

In Norway, the health regions are presently planning for two regional particle therapy
facilities in Oslo and Bergen, with the aim of clinical startup within the next 5–8 years
(Ministry of Finance, 2017). A research room will be built in each of these facilities,
equipped with fixed beamlines and technical equipment dedicated to the research and
development of particle therapy.

Participation in this common research and development endeavor will require in-
volvement in both national and international clinical studies, development of advanced
treatment techniques and refinement of the required technology for precise delivery of
the treatment dose in the patient; optimizing the relation between the clinical dose to the
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tumor and the unwanted dose to healthy tissue around this.

Proton Beam Delivery Systems

The pre-defined dose plan is a recipe for how the target volume in the patient should be
irradiated with protons: in terms of incident angle, field size, beam intensity and beam
energy. A cyclotron or a synchrotron accelerates protons from the ion source up to an
energy of (usually) 230MeV. A system of beam optics ensures that the beam is well
defined in terms of spatial and spectral distributions. The beam optics include dipole and
quadrupole magnets used to, respectively, bend and focus the beam, beammonitors and a
range modulator that adjusts the beam energy downwards (and thus also the range of the
protons in the patient). Finally, a so-called nozzle is located inside the treatment room,
where the beam is shaped laterally in accordance to the dose plan. Twomain nozzle types
are available, varying in the degree of treatment conformality, i.e. how well the dose can
be shaped to the tumor in three dimensions (Das and Paganetti, 2015):

i) The Double Scattering technique utilizes a proton beam that is scattered twice to
increase the lateral extent of the beam. The energy is first partially degraded with a
continuously turning range modulator wheel. The wheel degrades the beam differ-
ently, depending on its rotational angle: During a full rotation, the span of required
proton energies will be attained. The beam is scattered using a lead or tungsten disc,
spreading the beam up to 20mrad. A second scatterer is located 1–2m downstream,
it is shaped to remove the high intensities in the beam core so that the irradiation
field is flattened in terms of beam intensity. Finally, a patient-specific lead colli-
mator degrades the beam partially so that the lateral distribution of beam energies
match the treatment depth at that spot. Due to the material in front of the patient,
the neutron dose from this technique is non-negligible.* It is not possible to attain
a high conformality of the treatment proximal to the tumor, as the field is shaped to
the distal edges of the treatment volume.

ii) Intensity Modulated Proton Therapy (IMPT) consists of a continuously intensity
modulated pencil beam that is scanned across the patient using horizontal and ver-
tical magnetic fields. The pencil beam scans across a “depth layer” of the tumor,
before the energy is decreased slightly using, for instance, a range modulatorwedge
setup, and the next layer of the tumor is scanned. This method requires a precise
pencil beam that can be aimed towards a treatment “spot” in the target volume in
the patient. The resulting conformality of the dose distribution is very high, since
the dose can be “painted” in accordance to the three-dimensional dose plan.

*0.1–4mSv per “treatment Gy” depending on the measurement position (Shin et al., 2009).



1.2 Treatment Accuracy 5

Both of the above techniques are in use today, however almost all new and planned
therapy facilities are and will be based on the delivery of IMPT (PTCOG, 2017).

The Spread-Out Bragg Peak

A distinction is made between the depth-dose depositions from single proton, from a
mono-energetic proton beam and from an energy-modulated proton beam (a so-called
Spread-Out Bragg peak). A single proton leaves a large portion of its remaining energy
in a sub-mm (pristine) Bragg peak area. However, due to the statistical nature of the
energy loss process, the actual depth of the end point of a single proton track varies by a
few millimeter in the patient — the variation can be approximated by a Gaussian distri-
bution* where the standard deviation is approximately 1% of the range. This variation is
called range straggling. It follows that a mono-energetic proton beam will have an ex-
tended Bragg peak area. If the energy-loss curve is convoluted with the statistical range
straggling of a proton beam, and combined with the beam fluence, the result is the depth-
dose curve for a proton beam: this in contrast to the pristine energy loss curve of a single
proton.

In contrast, a clinical proton beam needs to cover an extended tumor area: the final
depth dose distribution must be broadened artificially, as seen in Fig. 1.1. This broad-
ening is performed by applying different proton beams with varying energy (range) and
intensity. The calculation of the appropriate beam energies and their relative intensities
is described in Jette and Chen (2011). Depth-dose distributions originating from a single
proton, a proton beam and a spread-out Bragg peak are shown in Fig. 1.3. This distinc-
tion is important to have in mind, as many of the discussions and results in this thesis
depend on the differences between the three depth-dose deposition types.

1.2 Treatment Accuracy

The proton beam characteristics yield a possibility to deliver a precise dose to a target
volume (i.e. the tumor including treatment margins). However, the range of protons
in the patient’s body is highly sensitive to changes in the patient’s anatomy during the
treatment course of the radiation. Variations due to anatomical changes, tumor shrinkage
and displacement, pockets of gas and air, inter- and intrafractional variations in the patient
positioning, will all have immediate consequences for how far a proton traverses into
the patient. All this emphasize the need for robust dose plans, which takes different
uncertainty sources into account and compensates for possible dose displacements during

*The distribution is slightly asymmetrical towards smaller ranges due to multiple Coulomb scattering.
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Figure 1.3: Depth-doses from an individual proton (200MeV), from a proton beam
(200MeV) displaying the Bragg peak, and from 11 beams in the 150–200MeV range,
producing a Spread-out Bragg peak. The depth-doses were made using the GATEMonte
Carlo simulation framework, following the approach in Jette and Chen (2011).

treatment.
Proton beams irradiate the target volume along different paths and angles in the pa-

tient tissue. In order to calculate the beam properties necessary for a precise dose depo-
sition, the measured tissue density, obtained from X-ray CT (known as the mass atten-
uation), needs to be converted into the proton stopping power (or its ratio to the proton
stopping power in water, called the Relative Stopping Power (RSP)). The RSP is the
fundamental tissue characteristic that, in addition to the proton beam energy, decides
the proton range. Scanner-unique look-up-tables are applied on the X-ray mass attenua-
tion to obtain the electron density, then used together with the energy loss formula (i.e.
Bethe’s equation) to calculate the proton stopping power (Schneider et al., 1996).

The conversion from X-ray mass attenuation to proton stopping power is associated
with an uncertainty inherent to the conversion between the different physical interac-
tions associated with interactions between protons and tissue, and photons and tissue,
respectively. These uncertainties, together with small changes in the patient positioning
cause large uncertainties: At 20 cm depth, the uncertainty in the proton range is usually
4–6mm, however it can be up to 1 cm (Paganetti, 2012).

1.2.1 Margins in Dose Planning

A complete dose delivery to a target volume* in the presence of uncertainties is made pos-
sible through the addition of margins around the tumor volume. Any deviations between
the planned treatment and actual treatment conceptually are kept within the treatment

*Usually meaning at least 95% of the prescribed dose to 98% of the target volume (McGowan et al.,
2013).
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Figure 1.4: The effect of an increase in the RSP: A comparison between two dose plans
for treatment of the central nervous system. Left: The nominal treatment plan. Right:
An artificial 3.5% increase in the RSP. Note the incomplete delivery of the prescribed
dose in the peripheral areas distal to the beam. An incomplete delivery is a dose below
95% of the prescribed dose in the target volume (the whole brain). From G. M. Engeseth
at Haukeland University Hospital.

margins.
The total range uncertainty is an important element in the margin that is added to

a clinical target volume. Applied margins are typically 2.5%–3.5% of the depth of the
Bragg peak plus a fixed part of 1–3mm. In Table 1.1 the margins that are applied at
different proton therapy institutions are shown (Paganetti, 2012). An example of the
clinical effect of this uncertainty is shown in Fig. 1.4, where the RSP of brain tissue is
artificially increased by 3.5% to illustrate the resulting under-dosage of the target volume.

Greater accuracy implies a more thorough planning and treatment process. Small
variations in tissue density, tumor size, patient positioning and even clothing will shift
the proton dose distribution considerably. This is not the case in conventional photon
radiation therapy, thus the workflow and dose planning methods in proton radiation ther-
apy need to be adjusted accordingly to benefit from the high potential for tumor dose
conformality due to the steep dose gradient in the depth distal to the Bragg peak.

1.2.2 Robust and Adaptive Treatment

A robust proton treatment plan takes into account the different scenarios that might po-
tentially degrade the quality of the treatment: Perturbations in the patient positioning,
small anatomical changes and errors in the calculated proton stopping power may all
substantially increase or decrease the delivered dose in the various regions of a target
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Institution Relative
margin

Fixed
margin

At 20 cm
depth

University of Florida Proton Therapy Institute 2.5% 1.5mm 6.5mm
Massachusetts General Hospital 3.5% 1mm 8mm
MD Anderson Proton Therapy Center 3.5% 3mm 10mm
Loma Linda University Medical Center 3.5% 3mm 10mm
Roberts Proton Therapy Center 3.5% 3mm 10mm

Table 1.1: Target volume margins applied at different proton therapy centers. The table
displays the relative and fixed part of the applied margin, as well as the total margin (the
sum of these two) at 20 cm treatment depth. Data from Paganetti (2012).

volume. The effect of over- or under dosage is significantly higher in proton therapy
than in photon therapy due to the shape of the depth-dose curve.

The robustness of a plan may be evaluated by perturbing all the relevant parameters
individually or with a combination thereof: the patient position in (x, y, z) is usually
shifted by ±2–5mm, and the RSP is increased or decreased by 3%–3.5%. Following
the definitions from McGowan et al. (2013), the plan is defined as robust if 95% of the
total prescribed dose is still delivered to 98% of the target volume (i.e. a complete dose
delivery) and the dose delivered to the various organs-at-risk does not exceed pre-defined
limits. Ideally, most of the foreseeable anatomical variations are accounted for in a robust
dose plan.

However, when altering individual values in this fashion, hundreds of treatment plans
need to be generated and their clinical results must be taken into account in the uncer-
tainty analysis. This is a potentially time-consuming process: one solution is to approx-
imate so-called pareto spaces — a strategy for multi-criterion optimization, where the
dosimetric outcome of various treatment constraints and strategies are easily assessed—
from a handful of perturbed dose plans (Craft et al., 2006).

While the robust planning of radiation treatment aims at mitigating the effect of un-
certainties, an adaptive treatment should identify any deviations between the prescribed
and delivered dose distributions — and recreate the plans based on the updated infor-
mation (McGowan et al., 2013). Thus all updated information will contribute towards
a more accurate treatment (van de Water et al., 2018): Tumor shrinkage, patient weight
loss and other changes to the RSP values of the patient’s tissue. It is time-demanding
to perform full validations of the delivered dose distribution using daily imaging and
so-called re-planning of new adaptive dose plans, and therefore the adaptive process is
often not fully included in the routine practice.
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1.2.3 In-vivo Imaging

In order to reduce the uncertainties in the treatment plan including some measures for
determining the patient’s organ motion, and also to provide the required information for
deciding if an adaptive approach is necessary, online in-vivo imaging can provide in-
formation about the patient’s anatomy or even dosimetric information about the proton
beam during treatment. Different approaches are in use or have been suggested: Adapt-
ing Cone Beam Computed Tomography (CBCT) for use in proton treatment situations
(Veiga et al., 2017) and using online MRI guidance (Raaymakers et al., 2008). It is also
possible to detect secondary particles during treatment such as: Back-to-back photons
from position annihilation with post-treatment or on-line Positron Emission Tomography
(PET) for imaging of activated isotopes in the treatment volume (Parodi and Enghardt,
2000); prompt-gamma emissions during treatment (Xie et al., 2017); emission of neu-
trons (Marafini et al., 2017; Meric, 2017) and charged secondaries (Reinhart et al., 2017)
during treatment.

As discussed previously, one of the uncertainty sources of the treatment margins is
the conversion between the tissue’s X-ray mass attenuation and the RSP values in this
tissue, a process inducing uncertainties in the 2%–3% range. In this number, about 1.5%
is due to the uncertainty of the tissue’s mean ionization potential (Paganetti, 2012). A
proposed approach is to reduce the uncertainties in the calculation by applying the RSP
conversion to images obtained with a Dual Energy CT, a modality with the potential for
yielding more accurate electron density measurements compared to regular CT (Zhu and
Penfold, 2016). Another approach to reduce this uncertainty is the proton Computed
Tomography (proton CT) modality — which is the topic of this thesis.

In-vivo imaging strategies as outlined above may all eventually play a role in particle
therapy, with the goal in mind of providing improved information for adaptive treatment
and for reducing the initial treatment margins.

1.3 Proton Computed Tomography

While protons of therapeutic energies are stopped in the body, protons with higher ener-
gies can pass completely through the body and be detected on the distal side, outside of
the patient. The idea of proton imaging is that a high energy proton beam is irradiated
through the patient just before the treatment, resulting in verification of both patient posi-
tioning and enabling proton range calculation (Collins-Fekete et al., 2017). The imaging
can be performed as proton radiography, where a single projectional image is produced,
or as proton CT, where different projections from a rotational geometry are combined
into a three-dimensional map.



10 1. Introduction

By measuring the residual energy of each proton, the tissue’s RSP along the proton’s
path can be deduced. In essence, these algorithms work by first estimating the individual
proton’s path through the patient. This is achieved by calculating the Most Likely Path
(MLP) using techniques such as Bayesian probabilistic inference (Williams, 2004) from
measurements of the proton’s position and direction shortly proximal and distal to the
patient. Then, the proton’s calculated average energy loss is applied along the proton’s
MLP, before finding the average RSP in each voxel by repeating the process for a large
number of protons (∼107) coming from different angles. This last process of mapping
individual proton paths to the voxel values is the traditional image reconstruction step,
and applying reconstruction algorithms such as MLP-FDK (Rit et al., 2013) or using
iterative methods as described in Penfold et al. (2010), a three-dimensional RSP map
can be reconstructed.

The RSPmap can be used directly in a Treatment Planning System, as amore accurate
estimate than the values converted from X-ray CT. Simulations and experimental proto-
types of proton CT systems have been used to reconstruct RSP maps that correspond to
better than 0.5mm range accuracy (Petterson et al., 2006). Other kinds of output from
this imaging technique are also feasible: attenuation maps applied for measuring the
nuclear interaction cross sections (Quiñones et al., 2016), multiple Coulomb scattering
maps (Plautz et al., 2014) and proton range straggling distributions (Bopp et al., 2013).

In proton CT, tracking detectors that are placed proximal and distal to the patient yield
information needed in order to obtain a measure of the path of each proton through the
patient to provide a measure of how and where the protons lose their energy. Telescopic
ionization chambers or calorimeters measure, respectively, the remaining range or en-
ergy of each individual proton after traversing the patient. The calorimeter is an energy
detector with sufficient material to completely stop the protons and record their energy.
A clinical proton CT scanner would significantly reduce the 8–10mm treatment mar-
gins applied today (Poludniowski et al., 2015).* The dose of such a scan is estimated at
7mGy, compared to CBCT doses which are in the 1–100mGy range (Palm et al., 2010).

1.3.1 Adaptive and Robust Proton Therapy with Proton CT

With a proton CT system, a higher accuracy on the RSP measurement is obtained. This
will in turn reduce the necessary magnitude of the perturbation in the robustness analysis
and by this reduce the applied treatment margins. If proton CT imaging were applied
regularly during the treatment course it would also serve as an input to the adaptive

*The treatment margin at 20 cm depth can be calculated as 3.5%+ 1mm (Paganetti, 2012). If the con-
tribution to the margins from range uncertainties were reduced to from 3.5% to 1.5%, the total uncertainty
including patient positioning would be reduced from 8mm to 4mm.
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treatment process and help decide if a re-planning of the treatment is necessary.
The clinicians and the dose planners will be able to apply margins for the irradiation

fields that are at the same time clinically safe in terms of covering the tumor with enough
dose, but also limited downwards to the best of knowledge and technology level, thus
avoiding unnecessary irradiation of healthy tissue while serving the former purpose.

1.3.2 Proton CT Prototype Systems

Several research groups are (and have been) developing prototype proton CT systems
based on different designs. In the current prototypes described in a recent review (Polud-
niowski et al., 2015), the calorimetry and tracking are based on various technologies, as
outlined below.

Tracking detectors

The tracking detectors are used for track reconstruction purposes and MLP estimation.
Two tracking planes should be positioned both proximal and distal to the patient, so that
a proton passing through each tracking plane is recorded twice: This to reconstruct both
position and direction. The two vectors are then used together with information about
the patient’s position to find the MLP of the proton. To first order, this can be a cubic
spline fitted to both vectors, however more sophisticated methods take into account the
expected proton scattering power for different tissue types (Wong et al., 2009).

Scintillating Fibers (Naimuddin et al., 2016) or Silicon Strip Detectors (SSD) (John-
son et al., 2013; Taylor et al., 2016a; Scaringella et al., 2013) are the most commonly
used technologies for the tracking detectors, which are based on one-dimensional strip
readout in several rotated planes for tracking purposes. The SSD readout is very quick,
since ∼ m + n channels are readout compared to the ∼ mn channels in a pixel detec-
tor — however the reconstruction of the SSD output into a two-dimensional hitmap is
non-trivial if the hit occupancy is high. A Gaseous Electron Multiplier solution has been
developed by Bucciantonio et al. (2013).

Residual energy detectors

In addition to the proton’s MLP information obtained from the tracking detectors, a pro-
ton CT system needs to measure the energy of each proton. The average energy loss of a
single proton is then applied along the proton’s MLP during the reconstruction process.

Crystal calorimeters such as CsI:Tl (Sadrozinski et al., 2013), YAG:Ce (Scaringella
et al., 2014) and NaI:Tl (Saraya et al., 2014), as well as plastic scintillators (Bashkirov
et al., 2016), are commonly used in combination with photomultipliers for the energy
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measurement. In this case, the number of scintillation photons are counted and calibrated
to the total energy deposited by a single proton (its residual energy).

In Bashkirov et al. (2016) a staged calorimeter system has been developed, consist-
ing of five individual plastic scintillators: this technique reduces the range uncertainty
markedly. The fractional energy deposition in the last stage can be measured more accu-
rately compared to a measuring the complete energy deposition in a single scintillator.

Poludniowski et al. (2014) are developing a proton CT prototype with a multiple
layers of large-area CMOS pixel sensors. They have demonstrated several image recon-
struction techniques relying solely on the tracking detectors, such as proton scattering
power CT (the degree of scattering inside the patient) (Taylor et al., 2016b).

The slow calorimeters of the first proton CT prototypes caused the total scan time
to be in the order of hours (Vanzi et al., 2013). The scan time have since been reduced
to minutes (Sadrozinski, 2013), however new and more rapid calorimeters are needed
before it is possible to introduce proton CT to the clinic.

1.3.3 The Digital Tracking Calorimeter

Norway is currently preparing for the construction of particle therapy facilities in Oslo
and Bergen (Ministry of Finance, 2017). In order to deliver a regional contribution to the
highest possible quality of patient treatment, a collaboration between Haukeland Univer-
sity Hospital, the University of Bergen and the Western Norway University of Applied
Sciences has been established in an effort, together with international partners, to de-
velop a proton CT system to be used during proton therapy, including the future proton
therapy centers in Norway.

The planned proton CT system is to be based on an earlier prototype detector orig-
inally designed for High Energy Physics purposes, capable of rapid and precise recon-
struction of particles traversing stacks of pixel sensor layers with a digital (1-bit) readout.
The detector was made available through the ALICE-FoCal collaboration at the Depart-
ment of Physics and Technology at UiB (Nooren et al., 2018).

The use of reconstruction of multiple proton tracks for calorimetry — a so-called
Tracking Calorimeter — is a novel method in terms of proton CT with some similar
research being performed by other groups (Esposito et al., 2015; Gehrke et al., 2018). It
is expected that this methodwill greatly increase the rate capabilities, therebyminimizing
the scan time for the patient. It may also simplify the proton CT setup since the detector
design eliminates the need for the separate proton tracking detectors usually required for
proton CT (at least the ones downstream to the patient): The tracking calorimeter already
measures the direction and position of individual protons.

So far, five MSc projects (Aadnevik, 2014; Austreim, 2015; Hansen, 2017; Grøttvik,
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2017; Schaug, 2017) and five ongoing PhD projects including this work are directly con-
nected to and involved in the proton CT efforts in Bergen.

1.4 Proton Interactions with Matter

The proton is in the context of proton therapy and proton imaging a point-like heavy
particle with a unit positive charge.* The physical interactions of interest are those hap-
pening, mainly electromagnetically, between protons and matter. These interactions can
be divided into three main groups in the therapeutic energy range under consideration:†

Inelastic Coulomb interactions

Protons ionizing atomic matter through inelastic
Coulomb interactions. This is a gradual process as
the number of electrons to hit is considerable. The
large number of inelastic collisions leads to a con-
tinuous energy loss for the protons. Since the elec-
tron mass is very low compared to the proton’s, any
deflection of the protons can be neglected.

Elastic Coulomb scattering

Protons being deflected by atomic nuclei through
elastic coulombic interactions. Due to the kinematics
of collisions between protons and nuclei, the protons
are deflected a little by each collision, ensuring that
the proton’s path is curved in a random fashion.

Inelastic nuclear interactions

Protons hitting atomic nuclei head-on, causing in-
elastic nuclear interactions. Through this process,
the original proton is absorbed and secondary parti-
cles are ejected: Protons, alphas, photons, neutrons,
3He, deuterons, tritons and more. Approximately 1%
of the protons undergo inelastic collisions for each
(equivalent) cm of water (Paganetti, 2002).

*In other contexts, the proton is a complex system consisting of three quarks (up, up, down) connected
by the gluons of the strong force. The seemingly chaotic creation and destruction of virtual quark-antiquark
pairs (this to shield the quarks’ color charges) are responsible for 99% of the proton’s mass. The remaining
1% is due to interactions between the three quarks and the Higgs field.

†The figures are reprinted from Newhauser and Zhang (2015) (CC-BY 3.0).
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1.4.1 Energy Loss Through the Bethe Equation

The Bethe equation (Bethe, 1930) is a description of the energy loss of charged parti-
cles by interaction with atomic electrons. Following the procedures and formalisms of
Grimes et al. (2017) and Ziegler et al. (2015), we can express the linear energy loss (also
called the stopping power S) in terms of MeV/cm:

S =

⟨
−dEdx

⟩
=

4πnz2

mec2β2

(
e2

4πε20

)2 [
f(β)− C

Z
− ln⟨I⟩ − δ

2
+ zL1 + z2L2

]
. (1.1)

Here: n is the electron density of the material, z is the projectile’s charge number, me is
the electron’s mass and β is the relativistic velocity v/c. The model is accurate to proton
energies down to approx. 1 MeV: below that energy, the calculations of the interactions
between the electron shells and the incoming proton are not accurate (Ziegler, 1999).
The various terms and corrections are:

• Fano’s calculation of themomentum transferred from the proton to a bound electron
is summarized in f(β) (Fano, 1963). It is defined as

f(β) =
1
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− β2, (1.2)

where∆Emax is a kinematic term describing the maximum energy transfer from the
proton to the electron:
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Here, mp is the proton mass. The approximation of Eq. (1.3) is due to the right-
hand term being very small and introduces and error of below 0.03% in the energy
range of interest. Combining this, we arrive at

f(β) ≃ ln
(
2mec

2β2

1− β2

)
− β2. (1.4)

• The mean energy required for ionization of bound electrons is denoted as ⟨I⟩. It can
be calculated using the Local Density Approximation (Ahlen, 1980) and Bragg’s
additivity rule (Thwaites, 1983). However the results are not very accurate (ICRU,
2016). It is an important factor in the calculation of the proton’s stopping power,*

and often the value in water, ⟨Iw⟩ ∼ 75–80 eV, is assumed for biological tissues.
However there is still little consensus even on that value (Paul, 2007; Kumazaki
et al., 2007), with uncertainties in the 10%–15% range (Besemer et al., 2013).

*In Paganetti (2012) the contribution of I to the range uncertainty is about 1.5%, compared to ∼2.4%
when all contributions are added.
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• The shell correction C/Z as a correction for the (wrong) assumption that the pro-
ton’s velocity is far higher than the bound electron’s velocity (Fano, 1963). Such
corrections must be performed for all the different electron shells around the nuclei.
Several attempts have been made at performing accurate calculations of this value
using hydrogenic wave functions (Bichsel, 1992), however the results are not very
accurate (Ziegler et al., 2015). Another approach is to rearrange Eq. (1.1) and find
values for ⟨I⟩ and C/Z using experimental values for the stopping power:

ln⟨I⟩+ C

Z
= f(β)−

[
SexpAβ

2

ρKZz2

]
− δ

2
+ zL1 + z2L2. (1.5)

The result is a correction to the Bethe equation of an order of 1%–6% (less than 1%
in the energies and materials relevant to radiotherapy (Grimes et al., 2017)), and
the corrections should be accurate to about 1% (Ziegler et al., 2015).

• The density effect correction δ/2 adds a correction which reduces the energy loss
at relativistic energies E > mpc

2. Parametrizations or tabulated data may be used
to find the magnitudes of the correction (Wyckoff, 1984).

• The zL1 term is called the Barkas-Andersen correction factor, and describes how
the bound electrons slightly rearrange their orbits as a response to the incoming
protons. The correction is quite high at low energies, approaching the 10% level
at a proton energy of 1MeV in a aluminum target. A parametrization is given in
Ziegler et al. (2015), which is an empirical fit to experimental data.

• The z2L2 is the Bloch-correction, it is necessary to correctly account for a reduction
in energy loss at high impact factors (large lateral passing distance between proton
and target nuclei), with simple parametrizations by Bichsel (1990).

To summarize, the stopping power of a proton passing through water is visualized in
Fig. 1.5 (left). The gradual increase of the stopping power with decreasing energy creates
a small area where all remaining energy is deposited (the Bragg peak). The contributions
from the various correction terms as discussed above is shown in Fig. 1.5 (right).

It should be noted that by using a proton CT system, the mean value of S(E) in every
voxel is measured directly through the average energy loss. This way, all the above-
mentioned corrections to Eq. (1.1) are implicitly included. When calculating S from
X-ray CT measurements, they must be explicitly accounted for (Schneider et al., 1996),
in addition to the several approximations that must be made: no measurements of ⟨I⟩,
the limited accuracy of some of the above-mentioned corrections and the fact that the
relationship between the measured mass attenuation and the required electron density is
not one-to-one.
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Figure 1.5: Left: The linear stopping power of protons in water. The underlying data
values are from PSTAR. Right: Contributions to the stopping power, in units of the stop-
ping number L.* Reprinted with permission from Emfietzoglou et al. (2009).

1.4.2 Multiple Coulomb Scattering

Protons undergoing elastic interactions with atomic nuclei are deflected gradually for
each collision. Following the procedure in Gottschalk (2010), the RMS scattering angle
θ0 for arbitrary thick slabs can be computed from Molière’s scattering theory, yielding

θ0 =

(∫ x

0

(
14.1MeV
pv(x′)

)2
1

X0

dx′

)1/2(
1 +

1

9
log10

x

X0

)
, (1.6)

which reduces to the thin-slab Highland formula for small thicknesses x (Highland,
1975):

θ0 ≃
14.1MeV

p1v1

√
x

X0

(
1 +

1

9
log10

x

X0

)
. (1.7)

The different variables introduced here are: x for the slab thickness, X0 is the radiation
length of the material, and pv is the proton’s kinematic properties for momentum and
velocity. In the simplified equation, it is assumed that the kinematic properties do not
change.

1.4.3 The Proton Range

The gradual energy loss of the proton beam ensures that each proton stops in a well-
defined area. By integrating the Bethe equation, we obtain the proton range in the so-
called Continuous Slowing Down Approximation (CSDA). This is the exact path length
of the proton, including the angular deflections due to multiple Coulomb scattering, or,

*The “stopping number” L refers to the different corrections, Li, to the Bethe equation of Eq. (1.1).
The primary stopping number L0 is defined as f(β)− C/Z − ln⟨I⟩ − δ/2.
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rather, ignoring the effects of the shortening of the projected range due to the scattering.
This value is slightly larger than the projected range, which is the stopping depth along
the proton’s original direction.

Due to the complexity of the Bethe equation, such an integration can either be per-
formed numerically (with full knowledge of the different corrections outlined in Sec-
tion 1.4.1) — yielding data tables such as PSTAR (Berger et al., 2005) or software such
as SRIM (Ziegler et al., 2015) — or approximately. In Section 2.2, different approxima-
tions of the proton range calculations will be discussed, however for now, a simple and
often used approximation can be defined: The range R can be approximated from the
initial energy E0 with

R = αE p
0 , (1.8)

with α and p being two parameters found by fitting to experimental data.* This approxi-
mation is called the Bragg-Kleeman rule (Bragg and Kleeman, 1905).

1.4.4 Water Equivalent Thickness

When a proton is slowed down by traversing through matter, it loses a certain amount
of energy. Accordingly, if the proton stops completely in matter, it has thus traversed a
certain distance in the material, which is the range, before stopping. TheWater Equiva-
lent Thickness (WET) of the material is the equivalent thickness of water that is needed
to slow down the proton to the same energy, or stop it completely. The WET can be cal-
culated as the ratio of the materials’ to the waters’ stopping powers and densities (Zhang
et al., 2010):

WET = tw = tm
ρm
ρw

Sm

Sw

, (1.9)

where tw is the water thickness, tm is the material thickness, ρm is the density and Sm

is the mean stopping power of material m. The ratio between the stopping powers are
approximately energy independent, however the energy dependence should be taken into
account when finding S = S(E).

Another method, which is the one used throughout this study, is to consider look up
tables of energy and range in known geometries. If the physical range is known, a look
up table for the energy is needed in order to obtain that range, and, find based upon this,
the range in water corresponding to this energy. By this method, the energy dependency
of the WET is taken care of implicitly. In Section 2.2, we see that this WET calculation
method is highly accurate when using cubic splines to interpolate between values.

*Often-used values are α = 0.0022 cm/MeV and p = 1.77 (Bortfeld and Schlegel, 1996). In Sec-
tion 2.2 the values α = 0.002 62 cm/MeV and p = 1.736 were found to be a better fit to the PSTAR data
in the therapeutic energy range.
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A material’s Water Equivalent Path Length (WEPL) is the ratio of the WET to the
physical range. It is a value that can be assigned to the voxels of the reconstructed image
during a proton CT reconstruction, similar to the approach of assigning RSP values.

1.4.5 Range Straggling

Energy loss by ionization is a statistical process, and it follows that the final range of an
ensemble of protons must be distributed with a finite width. From Bortfeld (1997), and,
originally, fromLivingston and Bethe (1937), we have that the so-called range straggling
distribution from a mono-energetic proton beam, here a Gaussian with the RMS value
σR, can be found by combining the Bohr’s classical formula and the Bragg-Kleeman
range-energy relationship, Eq. (1.8), with the result

σ2
R ≃ e4keed

p2α2/p

3− 2/p
R3−2/p (1.10)

σR ≃ 0.0123 R0.924, (1.11)

with e, ke and ed as, respectively, the electron charge, the Coulomb constant and electron
density. The factors α and p can be found from the Bragg-Kleeman relationship, and the
values α = 0.002 62 cm/MeV and p = 1.736 as we will find in Section 2.2 are applied
in the second line, as well as [e4keed]water ≃ 0.087MeV2 cm. The result is that the range
straggling is approximately equal to 1% of the range in water— this rule-of-thumb holds
for different media, as well, given that the range is defined as the WET of the slab.

The increase in total range straggling σR,tot due to a proton beam that has a non-zero
energy spread, σE, can be included in Eq. (1.11) through the error propagation formula,
where dR/dE is calculated using the Bragg-Kleeman rule. We get

σ2
R,tot = σ2

R + σ2
E (dR/dE)2 (1.12)

= σ2
R + σ2

Eα
2p2E2p−2. (1.13)

1.5 Computational Tools

1.5.1 Monte Carlo Simulations

Themain project goals in this study require the information from theoretical calculations,
results from experimental measurements in a proton beam line to calculate the expected
properties of the planned proton CT scanner. Such properties can be quantifiable entities
such as:

i) The spatial resolution, for accurate determination of the proton’s most likely path.
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ii) The accuracy of the reconstructed stopping power values. This accuracy is here
determined on basis of the range resolution of reconstructed proton paths. The
range resolution consists of the measurement uncertainty as well as a systematic
error (bias).

These fundamental entities will have to be simulated through so-called Monte Carlo
(MC) programs and measured experimentally during an optimization of the detector, in
order to enable a further development of this detector; with the aim of obtaining a rapid
detection and reconstruction of the deposited energy and the tracks of the traversing pro-
tons. Physical parameters for the protons will create the basis for these MC simulations:
The proton beam energy (direction and momentum), the proton beam spread (the energy
and momentum distributions), as well as details about the detector such as pixel size and
sampling detector thickness. In addition, detailed information about the imaged body or
a simplified phantom is required.

The MC simulations consist of propagating particles through the detailed geometry,
during which the incoming protons undergo a high number of randomly (stochastically)
distributed fundamental physical interactions. These interactions happen between the
proton beam and the traversed materials, thus mimicking the real processes yielding re-
sults that can be utilized as benchmark results for later comparisons with measurements
and vice versa.

For practical reasons, a condensed approach is used, where the average effect of a
large number of small interactions is rather calculated on a macroscopic scale. Two such
examples are the Bethe theory, where the gradual energy loss from a large number of in-
elastic Coulomb interactions is calculated as the average energy loss per unit length, and
the Molière theory where the average angular deflection resulting from several elastic
Coulomb interactions from a slab of the material is calculated. The step size is an impor-
tant concept in MC simulations, which determines how far a particle should propagate
before applying the condensed interactions. Another concept is the production threshold,
which determines when secondary particles should be generated and tracked instead of
the energy being deposited locally.

The MC simulation method is a common, powerful and versatile tool widely used in
physics research where the study of interactions between ionizing radiation and matter
is of importance. MC is a a valuable tool during the development and design phases of
detectors due to its ability to assess the optimal design parameters prior to experimental
efforts.
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Figure 1.6: The workflow for the Monte Carlo simulations and proton beam measure-
ments.

1.5.2 Analysis Workflow Using Monte Carlo

The workflow for obtaining the proton stopping power is illustrated in Fig. 1.6. As this
diagram shows, the detector will be developed in a mutually dependent and continuous
optimization process where the detector functionality is determined, improved and fine-
tuned based upon results from both simulations and measurements. The MC simulation
criteria, the geometry and setup need to be properly defined. Computational choices
such as the interaction step length affect both the accuracy and the running time of the
simulation. This process is described later in Section 2.1. The components that need to
be defined are described below and in Fig. 1.7:

i) Aproton beam line to obtain the correct energy spectrum characteristics, as well as
the phase space distributions of the high energy protons. In the design optimization
phase, as described in Chapter 5, a water phantom of varying thickness modulates
a mono-energetic beam to decrease the energy and increase the energy spread in a
realistic fashion

ii) Two particle tracker planes in front of the patient or phantom. This is usually a
two-layer silicon strip detector (Bruzzi et al., 2007). Its omission may be possible,
as discussed in Chapter 5.

iii) The target, which could be a simple object like a cubic water phantom or more
complex geometries to test for basic image quality measures.

iv) A calorimeter for particle tracking and energy measurement: The DTC that is the
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Figure 1.7: The proton CT setup in the Monte Carlo simulations; The calorimeter (here
shown as the ALICE-FoCal prototype) is placed in a virtual proton beam. The protons
traverse through a phantom and the calorimeter placed behind the patient. The setup
shown must be accurately modeled to match a realistic proton CT system where the path
and deposited energy of each proton is used for proton stopping power reconstruction.

topic of this thesis. The DTC measures the positions and directions of incoming
protons, so the separate tracker planes distal to the patient are included in the track-
ing calorimeter.

In the DTC, each proton passing through one of the many pixels has a probability of
registering as a hit in the pixel, which is a yes/no value. In the simulations, this behavior
can be modeled to obtain a realistic detector response.

From the energy loss and proton tracking information in the tracking calorimeter;
including proton tracking information from the additional tracking planes before the ob-
ject, the complete proton path through the object needs to be reconstructed. There are
algorithms to do this (Rit et al., 2013): These models use the limited information about
entry and exit position and angles to reconstruct the complex path of the proton through
the body.

With knowledge of the proton path through the object, the volumetric proton stopping
power map can be reconstructed. Filtered Back Projection algorithms generalized from
X-ray CT exist (Li and Liang, 2004), but they are noisy and poorly represent the imaged
body. More advanced reconstruction methods must be considered (Penfold, 2010) before
the image quality is of clinical value, and can be compared to clinical proton stopping
power maps converted from X-ray CT.
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1.5.3 Analysis Software

The MC program GATE (Geant4 Application For Tomographic Emission) is an appli-
cation of the C++ based MC framework Geant4 (Agostinelli et al., 2003). The GATE
package is applied in the MC simulations as it simplifies the usage of Geant4, as well as
adding features for simulations of detector functionality, such as the possibilities for sim-
plified geometry building, readout logistics and triggering systems. The input to GATE
is given through macro files which require no compilation before being executed.

At the end of a run involving hundreds of thousands of individual particle histories,
the resulting output is saved to a file readable by simple graphing tools or through more
advanced analysis suites such as ROOT (Brun and Rademakers, 1997). ROOT is an
analysis framework distributed freely as a C++ library. It includes functionalities such as
file I/O, efficient data containers, least-squares fitting and powerful visualization tools.

See Section 2.1 for a comparison of the output from GATE as described above with
other MC software packages such as MCNP6 and FLUKA, as well as with experimental
and semi-empirical data from PSTAR and Janni (Janni, 1982).

1.6 Research Objective

In this introductory chapter, we have clarified the need for a clinical realization of a
proton CT system. The main motivation for this is the reduction of treatment margins
that are applied during proton therapy, thereby reducing the probability of development
of secondary cancers and other side effects following proton treatment.

While several groups have designed prototype systems, proton CT is not currently
available for clinical use, and there is little consensus regarding the optimal design specifi-
cations or technological base for a clinical proton CT. To this end, the research objec-
tives behind this doctoral project are based on the benchmarking of a prototype tracking
calorimeter for proton CT purposes, and can be summarized as

i) Develop analysis tools for using a prototype tracking calorimeter in a proton CT
context. Specifically, modeling of the in-pixel charge diffusion process for energy
deposition calculations, the development and implementation of a proton track re-
construction algorithm and development of a range calculation scheme in order to
obtain an accurate range calculation of each recorded proton in the proton beam.

ii) Perform experimental proton beam tests using the prototype tracking calorimeter
from the ALICE-FoCal experiment and apply applicable post-processing and cali-
bration. Model the geometry and perform MC simulations to complement the ex-
perimental data.
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iii) Apply the analysis methodology from (i) on the experimental and simulated data,
to benchmark the prototype tracking calorimeter in terms of range resolution, track
reconstruction efficiency and limitations on the possible proton track densities that
can be reconstructed.

iv) Apply the experience from (iii) together with MC simulations to propose a design
for the next prototype tracking calorimeter, optimized specifically for proton CT.
Find the expected relevant properties of the system, compared to the to existing
prototype and to the requirements for a proton CT.

The work described in this thesis is an integral part of this larger collaborative project,
where the required simulation and analysis framework to reconstruct the tracks originat-
ing from high-energy protons entering and then stopping inside the detector has been
developed. This work has demonstrated the feasibility of the prototype Digital Tracking
Calorimeter in the context of proton CT, in addition to revealing present shortcomings in
terms of range resolution and readout speed (this due to its original design specification
as a prototype High Energy Physics instrument).

1.7 Thesis Overview

Two studies seeking to validate the calculation tools and software applied in this the-
sis have been performed: First, the accuracy of the MC programs MCNP6, GATE and
FLUKA is compared to each other and to experimental data.* Secondly, different calcu-
lation schemes for the individual proton range are compared. Both of these studies can
be found in Chapter 2.

The prototype tracking calorimeter is introduced in Chapter 3, together with details
on the performed experimental beam test as well as the necessary post-processing and
calibration routines applied on the experimental data.

The design of the MC setup, the different parts of the developed analysis framework
and the results obtainedwhen applied on the experimental data are described in Chapter 4.

The optimization recommendations of the detector design for the next prototype, as
well as the applied methodology, are found in Chapter 5, before ending with a compila-
tion of the results, discussions and conclusions.

*Due to the multidisciplinary nature of the work that has been carried out, some specific contributions
must be stated explicitly: In the MC program comparison study of Section 2.1, Jarle R. Sølie, Helge E.
S. Pettersen and Ilker Meric designed the study and analysis. Jarle R. Sølie performed the FLUKA sim-
ulations and compiled the results. Ilker Meric performed the MCNP6 simulations. Helge E. S. Pettersen
performed the GATE simulations, analysed the MC data and created the figures.
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Chapter 2

Proton Range Calculations: Monte
Carlo Simulations and Analytical
Models

In the introductory chapter, proton therapy and the concept of the proton CT were de-
scribed. An overview of the underlying physics was presented as well. Before continuing
to the technical details about proton CT and the Digital Tracking Calorimeter, which is
the main topic of this work, it is worthwhile to go into detail on some of the tools used
in this thesis: Computer simulations using Monte Carlo (MC) software, and various an-
alytical models of the proton range. This chapter consists of two parts:

In Section 2.1, we present a comparison of the results from the MC program GATE
with published experimental and semi-empirical data and also with output from similar
MC programs: this is done to benchmark the accuracy of the GATE MC program used
in this project.*

In Section 2.2, we direct the focus towards the accuracy of different analytical and
interpolation proton range calculation methods. A comparison of the accuracy of several
calculation schemes has been performed. As in the former section, this is done as a check
of the validity of the underlying calculations that are performed in this thesis.†

2.1 Proton Range Calculations with Monte Carlo Simu-
lations

The results presented in this thesis rely on an extensive application of MC simulations.
The choice of the particular MC program to be applied in a research project is often made

*This work has been submitted to Radiation Physics and Chemistry (Sølie et al., 2017).
†This work has been published in Radiation Physics and Chemistry (Pettersen et al., 2018).
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arbitrarily, based on availability or on prior knowledge. In this section, we compare
simulation results obtained through different MC programs: the results are compared to
each other, and to results from the literature where applicable. In doing this, the physics
output from the GATE MC program, which is applied in this thesis, are compared to
results from similar software, with the dual purpose of testing the different results with
the results from other programs and also to validate the approach by this way of double
checking the work with definitions, geometry, and selection of physics and processes to
be included in the simulations.

The parameters to be studied are: the proton ranges; the longitudinal and lateral vari-
ation of individual proton’s ranges, respectively called beam straggling and transverse
beam spread (induced mainly by multiple Coulomb scattering); and also the fraction of
primary protons lost to nuclear interactions before the protons come to rest in the tra-
versed matter.

2.1.1 Existing Literature

There exist numerous studies with focus on detailed comparisons of different MC pro-
grams. The transport of protons grazing a tungsten block has beenmodeled byKimstrand
et al. (2008), by applying Geant4.8.2, FLUKA2006 and MCNPX2.4.0. There it was
found that while the energy spectrum of out-scattered protons agreed between the MC
programs, dose-weighted out-scatter probability was highly dependent on user-defined
settings, and quantitatively the deviation in out-scatter probability between simulations
could reach up to 37%.

Other studies have shown discrepancies in the transverse beam spread between dif-
ferent MC programs and experimental data. Grevillot et al. (2010) reports that GATE
underestimates the beam spread, attributed to the multiple Coulomb scattering model
applied in GATE. One study (Bednarz et al., 2011) reports discrepancies in the multi-
ple Coulomb scattering algorithms between MCNPX and Geant4, where Geant4 is more
accurate in calculating the scattering angles and MCNPX is more accurate in calculat-
ing the lateral displacements, when compared to the theory of Molière and of Highland.
Another study (Mertens et al., 2010) finds that MCNP overestimates the beam spread in
low density (and low Z) targets, suggesting inaccuracies in the scattering cross-sections
as a reason for the overestimation. Lin et al. (2017) have investigated the angular dis-
tributions of protons, when spread after hitting water and aluminum targets, as well as
the Bragg peak position in a water phantom: They found similar inconsistencies in the
lateral beam spread between the applied MC programs (FLUKA, Geant4 and MCNP6),
but that there was agreement in the calculation of longitudinal Bragg peak positions.

There is little published information available concerning direct comparisons of pro-
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Figure 2.1: The proton tracking detector geometry consisting of 30 layers, here it is
overlaid with a MC simulated primary proton beam consisting of 105 protons traversing
inside the middle of the detector, creating a shower of tracks of interactions leading to a
halt of the protons as their energy is deposited in the detector.

ton ranges and range straggling between the available MC programs, for studies per-
formed at therapeutic energies. The results here represent an attempt to compare proton
ranges and the range straggling calculated by the above-mentioned MC programs in a
heterogeneous, layered calorimeter geometry such as the proton CT geometry studied in
this thesis.

2.1.2 Monte Carlo Programs

Three general-purposeMCprograms have been applied for the comparison: “Geant4Ap-
plication for Emission Tomography” (GATE) version 7.2 (using Geant4 version 10.2.2)
(Agostinelli et al., 2003; Jan et al., 2004), “Monte Carlo N-Particle” (MCNP6) version
6.1 (Goorley et al., 2013) and “FLuktUierende KAskade” (FLUKA) version 2011.2c.5
(Ferrari et al., 2005).

Semi-empirical data of proton ranges from PSTAR (Berger et al., 2005), as well as
data on the transverse beam spread and the amount of nuclear interactions from Janni
(1982), are included in the comparisons where applicable. The analysis of the MC sim-
ulated data is carried out using the ROOT data analysis framework. The analysis code
used in this work is made freely available in a GitHub repository (Pettersen, 2017b).
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MC program Applied physics package Notes
GATE QGSP_BIC_EMY: Using the

“option 3” electromagnetic
model.

Mean Ionization potential for wa-
ter manually set to 75 eV to match
PSTAR data tables

MCNP6 Cascade Exciton Model
(CEM) for nuclear interac-
tions. Vavilov straggling
model for charged particle
straggling.

The Bragg additivity rule
(Thwaites, 1983) is used to calcu-
late the mean ionization potential
for mixtures and compounds.

FLUKA The physics package
PRESICIO

Particle transport threshold set at
100 keV. Mean Ionization potential
for water manually set to 75 eV.

Table 2.1: The applied physics packages and parameters of the MC software programs
considered in this work.

Physics Settings

In the simulations of the above-mentioned geometries, the incident proton beam is defined
as an infinitely thin pencil beam, having its origin 1mm proximal to the front surface of
the target. The beam is mono-energetic and has no dispersion, with energies in the nor-
mal therapeutic span of 50–230MeV in 10MeV increments.

The beam consists of 105 primary protons for each of the simulated beam energies.
The number of primaries per simulation was chosen for the following reasons: First,
since many different energies and geometries were to be simulated, the total simulation
time needed to be kept manageable. Secondly, the relevant output parameters are calcu-
lated from the available data since they are not located in the “tails” of the distributions,
and therefore 105 primaries per setup was considered to be sufficient. The physics set-
tings for each MC program, chosen with the aim of ensuring that the relevant physics
processes and thresholds are accounted for in the simulations, are listed in Table 2.1.

In GATE, the physics builder list QGSP_BIC_EMY is applied.* This physics list is rec-
ommended for MC simulations in proton therapy and in proton imaging due to a variable
maximum allowed step size that is decreasing towards and inside the Bragg Peak depth,
and a high resolution binning of the pre-calculated stopping power tables (Grevillot et al.,
2010; Jarlskog and Paganetti, 2008).

*QGSP_BIC_EMY uses the Quark-Gluon String Pre-compound model (QGSP), relevant above 12GeV,
the Binary Cascade (BIC) model for nuclear interactions, and high-resolution electromagnetic interaction
data (EMY).
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In MCNP6, nuclear interactions were modeled using the Cascade-Exciton Model
(CEM) 03.03 which is the recommended model for nuclear interactions (Goorley et al.,
2013). The use of tabulated cross-sectional data was turned off and nuclear interactions
were treated using only interaction models.* The default Vavilov model for charged par-
ticle straggling was used. For multiple scattering, the default Fermilab angular deflection
model was used (Mokhov and Striganov, 2002).

In FLUKA, the predefined physics setting PRECISIO is recommended for precision
simulations with respect to transport thresholds and activation of processes as described
in the FLUKA manual (Ferrari et al., 2005).

It is important to note that a manual adjustment of the ionization potentials of the
different materials is possible in both GATE and FLUKA, whereas changing the auto-
matically set, or calculated, ionization potentials in MCNP6 requires access to the source
code (Seravalli et al., 2012): thus this has not been done in this work. All simulations
using MCNP6 and FLUKA were run in the “proton-only” mode, thus ignoring the trans-
port of all secondary particles other than protons. In GATE, the secondary protons were
simulated but discarded during the analysis. This was done to decrease the time required
for the MC simulations, and was made possible due to the fact that secondary particles
do not contribute to the results obtained here.

Geometries Under Consideration

Three different geometries have been chosen for this study: two homogeneous phantoms
consisting of, respectively, water and aluminum, and a more complex detector geome-
try similar to the proton CT calorimeter described in this thesis. The applied detector
geometry is shown in Fig. 2.1, and its materials are listed in Table 2.2.

The water and aluminum phantoms have a cross sectional area of 10× 10 cm2 and
a longitudinal depth of 40 cm, thus stopping all primary protons with energies up to
230MeV. Themore complex detector geometry, with a cross-sectional area of 10× 10 cm2

and a longitudinal depth of 15 cm, ensures that approximately all protonswith energies up
to 210MeV will stop inside the detector. Note that while the energies of above 210MeV
are not applicable in the detector geometry, this limitation in range will not affect the
outcome of this study, as the detector is implemented identically in the three MC pro-
grams.

*The tabulated data are only valid below 150MeV, and models are used for higher energies (Chadwick
et al., 1999). By forcing the use of models at all energies, the same calculation method is kept constant
throughout.



30 2. Proton Range Calculations: Monte Carlo Simulations and Analytical Models

Volume element name Material Thickness [µm]
Sensor Chip Silicon 120
Glue Silver glue 80
PCB Cu / SiO2 epoxy 160
Glue Cyano-acrylate 70
Absorber Aluminum 4300
Air gap Air 245

Table 2.2: Description of the geometry representing the proton tracking detector geom-
etry. A single layer is modeled as a 10× 10 cm2 and 4.975mm thick volume made up
of each of the materials listed above in the given order. This geometry is sequentially
repeated 30 times to obtain the complete detector geometry with 30 layers.

2.1.3 Comparision of the Parameters Describing the Range Distri-
bution

The coordinates of the stopping position of all primary protons are stored during the MC
simulations. This is in contrast to the energy loss of the proton beam. Fig. 2.2 shows
the relationship between the stopping position (range) and the energy loss distribution,
as well as some of the parameters to be compared. Gaussian fits are applied to different
parts of the obtained dataset, and the following values are obtained:

i) R: The mean value of the normal distribution of the protons’ stopping depths, yield-
ing the projected range.

ii) σR: The range straggling, defined as the standard deviation of the range distribution.

iii) σx/R: The lateral deflection of the stopping position, called the transverse beam
spread in Makarova et al. (2017). It is the ratio of the standard deviation of the
lateral distribution of stopping positions (measured in the x-direction), σx, to the
proton range R.

iv) fNI: The fraction of protons that undergo nuclear interactions. fNI is calculated as
the ratio of the number of nuclear interactions nNI to the number of primary protons
ntot. The nNI and ntot values are found by utilizing the interaction-type metadata in
the output files from the respective MC programs.

2.1.4 Comparison of the Results from the Different Simulations

The values for proton range, range straggling, transverse beam spread and the fraction of
nuclear interactions have been obtained through simulations with the threeMC programs
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Figure 2.2: The relationship between the proton beam’s energy loss (light gray), and the
protons’ final stopping position R (green). Shown is also the range straggling σR and
protons undergoing nuclear interactions. MC simulation results from a 200MeV beam
in water, MC simulated using GATE.

for the three different geometries: they are listed below.

Proton Ranges

Table 2.3 lists MC simulated R values for a few selected initial primary proton energies,
as well as the corresponding RPSTAR values. In Fig. 2.4 (left), the range deviation ∆(R)

is shown: For water and aluminum, ∆(R)m,i = Rm,i − RPSTAR is shown, where m is the
medium, i is the MC program and “PSTAR” is the corresponding projected range from
the PSTAR database. For the detector geometry, the deviation from the average results,
∆(R)D,i = RD,i −

∑
j RD,j/3 is shown, as no accurate experimental values are available.

The largest deviation for water, ∆(R)w, is less than 1.7 mm (0.5% of the range) and
∆(R)Al is below 0.2 mm (0.13% of the range). For the detector geometry,∆(R)D is below
0.2 mm (0.15% of the range). While FLUKA and GATE match each other quite well in
water, and their∆(R)w values both are below 0.5 mm, results fromMCNP6 show a larger
range deviation as a function of increasing initial proton energy.

The Value of the Ionization Potential for Water

In Fig. 2.4, it is observed that the deviation ∆(R)w,MCNP6 is large compared to the ∆(R)

values of GATE and FLUKA. A possible cause for this divergence is the ionization po-
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Material
Energy
[MeV]

GATE
[mm]

MCNP6
[mm]

FLUKA
[mm]

PSTAR
[mm]

50 22.2 22.2 22.2 22.2
Water 100 77.0 76.8 77.0 77.1

150 157.3 156.9 157.3 157.6
230 328.7 327.4 328.6 329.1
50 10.8 10.8 10.9 10.8

Aluminum 100 37.0 36.9 37.1 37.0
150 75.0 75.0 75.3 75.1
230 155.8 156.1 156.3 156.0
50 11.1 11.1 11.1 -

Detector 100 37.9 38.0 37.9 -
150 76.8 76.8 77.1 -
210 137.0 137.2 137.3 -

Table 2.3: The proton ranges fromMC simulations and PSTAR data for 50, 100, 150 and
230 MeV primary proton energies in water, in aluminum and in the detector geometry.
The maximum energy applied for the simulations with the detector geometry is 210 MeV.

tential of water, Iw, which is an important parameter in estimating the range of protons
in low Z materials (Newhauser and Zhang, 2015). Five separate GATE simulations with
varying Iw values were performed, and the resulting ranges are compared to the range
predicted by MCNP6: Figure 2.3 shows different curves for Rw,GATE−Rw,MCNP6. Where
applicable, MCNP6 uses the ICRU49-recommended values for the I of amaterial (Wyck-
off, 1993; ICRU, 2016). For composite materials, MCNP6 uses the Bragg Additivity
rule (Thwaites, 1983) to calculate I. The deviation Rw,GATE − Rw,MCNP6 is smallest for
Iw = 73 eV.

Proton Range Straggling

The obtained results for the range straggling σR for some selected primary proton energies
are listed in Table 2.4 and the complete MC simulation results are displayed in Fig. 2.4
(right). The values are compared to Janni (available for water and aluminum), and to
each other.

The results from all three MC programs show a similar amount of range straggling,
with a maximum difference between the MC programs for water at 0.48 mm (12.5% of
σR), and for aluminum of 0.08 mm (4.5% of σR). The largest deviation compared to
Janni is seen with the MCNP6 result, perhaps due to the Iw value as discussed above.
The MC results in water agree well with the PSTAR values (within 0.1% on average),
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Figure 2.3: Range deviation between MCNP6 and five separate GATE simulations. The
GATE simulations are made using different values of the ionization potential in water,
varying between 71 eV and 75 eV.

and within 4% on average in aluminum. For the detector geometry, the largest difference
between the MC programs is 0.24 mm (13.7% of σR). A higher variation in the range
straggling is observed in the detector geometry, this is perhaps due to its longitudinal
structure with different materials, with varying densities and material composition along
the longitudinal axis.

Transverse Proton Beam Spread

The obtained results for the transverse beam spread, σx/R, are listed in Table 2.5 for
some selected primary proton energies. Curves for σx/R are shown in Fig. 2.5 (left).
There is a good agreement between MCNP6 and FLUKA. However, the results from the
GATE simulations are 5%–20% lower compared to the average results from the other
MC programs. This can also be seen in Fig. 2.6, where the lateral beam profiles of a
120 MeV proton beam incident on water are compared with respect to the three MC
programs.
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Figure 2.4: The range deviation in different materials (left). *Range deviation: In water
(top left) and aluminum (middle left), the range deviation is the deviation between MC
and the PSTAR data. In the detector geometry (bottom left), it is the deviation from the
average results from the three MC programs. The range straggling is also shown (right),
with corresponding values from Janni for water and aluminum.
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Material Energy
[MeV]

GATE
[mm]

MCNP6
[mm]

FLUKA
[mm]

Janni
[mm]

50 0.25 0.27 0.27 0.28
Water 100 0.87 0.93 0.91 0.91

150 1.70 1.90 1.79 1.79
230 3.36 3.85 3.57 3.57*
50 0.16 0.15 0.17 0.14

Aluminum 100 0.45 0.47 0.48 0.44
150 0.87 0.93 0.92 0.86
230 1.73 1.78 1.81 1.70*
50 0.16 0.14 0.17 -

Detector 100 0.48 0.42 0.49 -
150 0.88 1.02 0.98 -
210 1.53 1.64 1.60 -

Table 2.4: The range straggling values, σR, from MC results and data from Janni. *The
230 MeV values from Janni are interpolated using a spline approach. The maximum
energy applied in the simulations of the detector geometry is 210 MeV.

Material Energy
[MeV]

GATE
[mm]

MCNP6
[mm]

FLUKA
[mm]

50 0.038 0.046 0.042
Water 100 0.026 0.033 0.031

150 0.021 0.025 0.024
230 0.015 0.016 0.016
50 0.047 0.051 0.052

Aluminum 100 0.046 0.056 0.053
150 0.035 0.042 0.047
230 0.034 0.041 0.039
50 0.048 0.051 0.052

Detector 100 0.044 0.051 0.048
150 0.037 0.042 0.040
210 0.031 0.033 0.032

Table 2.5: The transverse beam spread σx/R from the MC programs. The maximum
energy applied in simulations of the detector geometry is 210 MeV.
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Figure 2.5: The transverse beam spread σx/R, calculated in water (top left), in alu-
minum (middle left) and in the detector geometry (bottom left). The fractions of nuclear
interactions, fNI, are displayed in the right figures for the same geometries together with
the data from Janni.



2.1 Proton Range Calculations with Monte Carlo Simulations 37

Proton stopping position in x [mm]
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

N
um

be
r 

of
 p

ro
to

ns

10

100

1000

GATE

MCNP

FLUKA

Figure 2.6: The lateral profile of the Bragg Peak for the three MC programs. The lateral
beam spread obtained from simulations with GATE is less compared to the other MC
programs, a similar similar to the trend seen in Fig. 2.5 (left).

Fraction of Nuclear Interactions

The simulated results for the fraction of nuclear interactions, fNI, for some selected en-
ergies as well as corresponding data from Janni are collected in Table 2.6 and curves for
all energies are shown in Fig. 2.5 (right).

The largest relative deviations of fNI when compared to the data from Janni are 7.5%
for water and 6.9% for aluminum. The MC results are on average 6% higher than Janni
in water, and 1.3% lower than Janni in aluminum. For the detector geometry, the largest
deviation between the MC results is 6.2%.

2.1.5 Stochastic Uncertainty of the Monte Carlo Results

In Tables 2.3 to 2.6, no results are presented that quantify the uncertainty of the values
from the MC simulations. The uncertainty of the results are denoted as σfit(R), σfit(σR),
σfit(σx) and σfit(fNI). The origin of the uncertainties can be thought to be stochastic un-
certainties, uncertainties from the choice of histogram bin sizes and uncertainties from
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Material Energy
[MeV]

GATE MCNP6 FLUKA Janni

50 0.032 0.033 0.033 0.035
Water 100 0.096 0.089 0.100 0.098

150 0.173 0.164 0.178 0.166
230 0.321 0.298 0.312 0.274*
50 0.041 0.042 0.044 0.040

Aluminum 100 0.108 0.113 0.116 0.115
150 0.188 0.190 0.197 0.200
230 0.348 0.331 0.340 0.340*
50 0.040 0.043 0.041 -

Detector 100 0.104 0.106 0.110 -
150 0.181 0.187 0.193 -
210 0.291 0.291 0.297 -

Table 2.6: Fraction of protons undergoing nuclear interactions. The maximum energy
applied in simulations of the detector geometry is 210 MeV. Also given are the corre-
sponding values from Janni in water and aluminum. *The 230 MeV values from Janni
are interpolated using a spline approach.

any non-Gaussian contributions.* They are here calculated by error propagation of the
obtained fit errors of the parameters from the TMinuit fitting tool.

Uncertainty of the MC Proton Range

The uncertainty of the proton range is obtained directly from the TMinuit library as the
error in the fitting of the normal distribution to the data. In aluminum and water, the
relative range error σfit(R)/R is always below 0.01%. In the detector geometry, σfit(R)/R

is below 0.1% for all initial energies.

Uncertainty of the MC Range Straggling

The uncertainties of the range straggling are similar to the uncertainties of the range. The
absolute range straggling values σR are smaller, thus the relative uncertainty is increased.
The relative errors, σfit(σR)/σR, are below 1% in aluminum and in water, and below 5%
in the detector geometry for all initial energies: this higher uncertainty is most likely due
to the longitudinally more complex structure of the detector.

*A non-Gaussian contribution to R, for example, would be elastic scattering events that cause a prox-
imal asymmetry in the projected range.
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Uncertainty of the MC Transverse Beam Spread

The uncertainty of the transverse beam spread, σfit(σx/R), is calculated by propagating
the errors from the values that enter into its calculation. We arrive at the error calculation

σfit(σx/R) =

√(
σfit(σx)

∂(σx/R)

∂σx

)2

+

(
σfit(R)

∂(σx/R)

∂R

)2

(2.1)

=

√
σfit(σx)2

R2
+

σfit(R)2σ2
x

R4
(2.2)

Using the values obtained above for σfit(R) and σfit(σx), the relative uncertainty of the
transverse beam spread, σfit(σx/R)/(σx/R), is consistently below 0.5% for all the energies
and for all the media studied here.

Uncertainty of the Fraction of Nuclear Interaction Values

The uncertainty of the fraction of nuclear interactions, σfit(fNI), is calculated by error
propagation on the Poisson uncertainty of nNI. We find

σfit(fNI) = σfit(nNI)
dfNI
dnNI

=
√
nNI ·

1

ntot
(2.3)

The relative error is given as σfit(fNI)/fNI = 1/
√
nNI and is below 2% in all the geometries

and all the initial energies.

2.2 Proton Range Calculations with Analytical Models

In the first part of this chapter we saw that different MC programs are able to accurately
reproduce the proton’s range at different initial beam energies and in different geome-
tries. For benchmarking purposes and for calibration purposes of proton CT systems,
it is important to have an accurate conversion scheme between the ranges and energies
of protons. It is, however, impractical to produce energy-range tables of high accuracy
for a sufficiently large number of energy steps. The application of analytical models for
calculation of the proton range is therefore necessary. In this section, we look at different
approaches to calculations of the proton range. The analysis is performed using ROOT
5.34/19, and the applied program code is available through GitHub (Pettersen, 2017c).

Several parametrizations of the energy-range relationship exist, with different levels
of complexity and accuracy. The mean range R of a proton beam with initial energy
E0 in arbitrary media can be parametrized with, as an example, the well-known Bragg-
Kleeman formula, R = αEp

0 . This is a simplification, and the resulting range has thus
a limited accuracy. The model parameters are determined through a model fit to data
tables from measurements of ranges in phantoms performed during commissioning and
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quality assessment of a proton CT system, or during the design by employing MC simu-
lations. The pristine Bragg curve shape of individual proton tracks can also be found as
a differentiation of the energy-range parametrization.

Four models are considered in the following section: these are either semi-empirical
or based on interpolation. The semi-empirical models are derived from the Bethe equa-
tion and fitted to experimental data in order to find the parameters of the particular
parametrization scheme. The interpolation-based models use different approaches to
interpolate from look-up-tables of tabulated energy-range data.

The four models are evaluated based on their ability to reproduce the proton range
in water, and other media, at different energies, and also by comparing their resulting
Bragg curves for individual proton tracks.

2.2.1 Proton Range Dataset

High-resolution energy-range tables are created using the PSTAR database. The energy-
range tables for water are calculated with 1 µm range accuracy by numerical integration
of the total stopping power. In contrast to the MC study of Section 2.1, the range is here
calculated in the Continuous Slowing Down Approximation (CSDA) from the PSTAR
database, which accounts for the curvature of the proton’s path length due to scattering.
This choice is made in order to facilitate comparisons with the literature, and also since
it is the CSDA values that are obtained by numerical integration of the stopping power.
The difference between the CSDA range and the projected range (depth) for a 230MeV
proton is only 0.02%, where the CSDA range is slightly longer.

The material used here, called “liquid water” in the PSTAR database, is defined as
having a density of 1 g/cm3 and a mean ionization potential of 75 eV, similar to the water
used in the work described in Section 2.1. High-accuracy range values have also been
calculated for A-150 Tissue Equivalent Plastic, aluminum and tungsten: the study has
been repeated for these materials to further validate the approach.

It is not in the scope of this study to validate the accuracy of the experimental data
from the literature, such as PSTAR, which uses semi-empirical values based on ICRU49
(Wyckoff, 1993); from SRIM (Ziegler et al., 2015); and from Janni (1982). Previous
studies, such as Paul (2013), has estimated that the ICRU49 values should be accurate to
the 0.5% level, depending on the value of the mean ionization potential I. The question
in this study is thus: to which degree are the different models able to reproduce the
tabulated data?
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2.2.2 Analytical Models of the Proton Range

In order to calculate the proton range a priori, it is necessary to perform numerical inte-
grations of the Bethe equation, given here as Eq. (1.1). However, this requires intimate
knowledge of the input parameters, many of which exhibit a high level of uncertainty, as
explained in Section 1.4. It is also possible to simplify the Bethe equation itself, which
has been done in Grimes et al. (2017).

Semi-empirical models

An alternative to the numerical integration of the Bethe equation is to perform a series
of approximations in order to obtain a simplified energy-range relationship. Several ap-
proximations have been suggested: The Bragg-Kleeman rule is the 1st term of the Taylor
approximation. By inverting and differentiating the formula, one finds a simple expres-
sion for the energy loss (Bortfeld and Schlegel, 1996). The Bragg-Kleeman rule for a
proton’s range R with initial energy E0, and energy loss curve, dE/dz with respect to the
depth z, is given as:

R = αE p
0 (2.4)

E(z) = α−1/p(R− z)1/p (2.5)

−dEdz = p−1α−1/p(R− z)1/p−1 (2.6)

Here, α and p can be obtained from the Bethe equation or frommodel fits to energy-range
data. The second analytical model applies a series of exponential terms (Ulmer, 2007)
as a more accurate model for range calculations. Two separate approximations are here
offered in order to calculate R and E(z), respectively, and differentiation of the latter
gives rise to the dE/dz curve:

R = a1E0

[
1 +

N1∑
k=1

(bk − bk exp(−gkE0))

]
(2.7)

E(z) = (R− z)

N2∑
k=1

ck exp(−λk(R− z)) (2.8)

−dEdz =
E(z)

R− z
−

N2∑
k=1

λkck(R− z) exp(−λk(R− z)) (2.9)

The different parameters a1, bk, gk, λk and ck are described in Ulmer (2007). The pa-
rameters are here determined by fitting the model to the PSTAR energy-range data. A
recommendation for the number of terms was also made in the same study, whereN1 = 2

and N2 = 5 yielded a quite good accuracy while limiting the number of parameters to be
determined. The same number of terms is therefore applied in this present work.
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Data Interpolation Models

Another approach to the energy-range relationship is to directly use tabulated data in or-
der to determine proton ranges at pre-computed energies in geometries of known media.
However, interpolation is needed if the required pairs of energy-range data points are
unavailable. The same holds for more complex geometries, such as detector geometries,
where the tabulated data can be obtained through MC simulations.

Linear interpolation is the simplest interpolation scheme when working with a look-
up-table. However, this approach does not account for any curvature of the underlying
data. Spline interpolation is performed by calculating (here) a 3rd order polynomial func-
tion around each of the data points, linking them in a piecewise fashion. It is possible
to extract dE/dz curves from energy-range tables by calculating the range difference
between each energy step.

2.2.3 Evaluation Methods of Model Accuracy

In order to obtain the optimal model parameters, and to avoid over-fitting, 150 CSDA
range values for protons in water are split into two groups. The training group (NT = 25)
is used to find the model parameters, while the remaining control group (NC = 125) is
used to evaluate the model calculations at small range intervals. The range values are in
the therapeutic range and chosen from beam energies equidistantly spaced in the range 0–
250MeV. An example of the Bragg-Kleeman model is shown in Fig. 2.7, together with
data points from both groups. The Bragg-Kleeman model has here a higher accuracy
around 120MeV compared to at around 50MeV or at 250MeV. The PSTAR data points
are not displayed with their associated error bars, however the PSTAR data is estimated
to be correct to within 0.5% (Paul, 2013).

The accuracy of a model is found by comparing each range in the control group to the
corresponding model-calculated range at the same E0. The 75th percentile value of the
distribution of deviations between the estimated ranges and the PSTAR ranges is used as
a single measure for the accuracy of a model at all energies.

The Bragg curve of a single proton incident in water is obtained from a differentiation
of the energy-range relationship. The different parametrizations give rise to energy loss
curves of slightly different shapes, which can be compared visually against PSTAR data.

2.2.4 Accuracy of the Models

After performing themodel fitting, the resulting parameters for the Bragg-Kleemanmodel
can be compared to those obtained by other studies: see Table 2.7. The parameters from
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Figure 2.7: Range as a function of the initial energy, and the PSTAR energy-range data
from both the training group and the control group.
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Figure 2.8: The accuracy of the proton range calculations using different models. The
range error as shown is the relative and absolute difference between the estimated range
and the PSTAR data. The results are presented with respect to the control group, and
are visually limited downwards by the PSTAR dataset accuracy of 1 µm. From Pettersen
et al. (2018).
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Figure 2.9: The convergence of the models as a function of the number of data points
used for model fitting. The error shown here is calculated as the 75th percentile of all
the relative errors as shown in Fig. 2.8 for each of the models. The high accuracy of the
spline interpolation is a result of its curvature. From Pettersen et al. (2018).
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Figure 2.10: The energy loss curves for individual (190MeV) protons obtained by dif-
ferentiating the models obtained withNC = 125. The range is kept constant by the choice
of R0, in order to to facilitate a comparison between the curve shape. A curve showing
the PSTAR energy loss data is also included. From Pettersen et al. (2018).
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α [MeV/cm] p Error [mm]
This work 0.00262 1.736 0.69
Bortfeld (1997) 0.00220 1.770 0.85
Boon (1998) 0.00256 1.740 1.50

Table 2.7: The parameters of the proton range calculation using the Bragg-Kleeman
model, with the results found in this work and compared with other results. The (median)
error between PSTAR ranges and the model-calculated ranges are included for each
parameter set. From Pettersen et al. (2018).

the fit of the “sum of exponentials” model in are not as easy to compare, due to the many
terms linearly added; the values are therefore not reproduced here.

The accuracy of the proton range determination in water using different models is
shown in Fig. 2.8, with the 75th percentile accuracy shown in Table 2.8. The Bragg-
Kleeman model is the least accurate at a 75th percentile value of 3%. The “sum of ex-
ponentials” model and the linear interpolation model have a similar 75th percentile accu-
racy at around 0.3%, while the spline interpolation model has a 75th percentile accuracy
of 0.003%. The spline interpolation model yields the highest accuracy. A sub-percent
range calculation accuracy is obtained for all models above 90MeV, and for the spline
interpolation model above 10MeV.
Energy loss curves resulting from the different models is shown in Fig. 2.10. The method
described in this work has also been applied on a sample of other materials. The result-
ing deviations between the PSTAR ranges of different materials and the corresponding
model-generated ranges are similar for the various materials, as shown in Table 2.8.

Range accuracy oscillation

An oscillatory behavior in the accuracy, with respect to the initial energy, is observed
for three of the models, as seen in Fig. 2.8. The behavior has two different explanations,
depending on the model in question. For the analytical models, the oscillation is due to
the approximation of the energy-range relationship. Since the absolute error is shown, a
sudden drop in the range error signifies that the model-calculated range curve “crosses”
the PSTAR-calculated range curve. In the observed energy range, this happens twice
for the Bragg-Kleeman model (with two parameters), and three times for the “sum of
exponentials” model (with five parameters). The quick oscillation of the linear interpo-
lationmodel is seen because the linear approximation does not reproduce the curvature of
the underlying data, and thus any interpolated values between two sampled points have
higher errors than values close to the sampled points. The spline interpolation model
reproduces the curvature, and no similar oscillation is observed.
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Material Bragg-Kleeman Sum of exp. Linear interp. Spline interp.
Liquid Water 2.98% 0.30% 0.26% 0.003%
A-150 T. E. P. 3.02% 0.25% 0.25% 0.003%
Aluminum 2.55% 0.49% 0.26% 0.006%
Tungsten 1.25% 0.36% 0.22% 0.003%

Table 2.8: The deviation between the PSTAR control values and the model values for
the models under study, applied on four different materials: Liquid Water, A-150 Tissue
Equivalent Plastic (T. E. P.), aluminum and tungsten. The error shown is the 75th per-
centile of the absolute error over all energies in the range 1–250MeV. The number of
data points for model training is 25.

Model convergence

The numbers of training points needed for convergence of the different models are shown
in Fig. 2.9. A larger number of measurements at different energies is required for an
interpolation-based range calculation scheme compared to using the simple Bragg-Kleeman
rule with two parameters, or the “sum of exponentials” with five parameters. Using 25
data points for model fitting, the accuracy is kept at an acceptable level for all models,
and the 75th percentile of the errors in the range calculation is at 0.1% of the range for
both interpolation schemes and the sum of exponentials.

Bragg Curve Reproduction

The Bragg curves obtained from the interpolations and from differentiation of the Bragg-
Kleeman model are similar in shape. The curve obtained by using the “sum of expo-
nentials” model exhibits differences close to the Bragg Peak, mimicking an exponential
decay. While the area under the curve is the same (due to that their integrals, yielding
the energy-range relationship, are similar to within a few permille), the curve deviates
around the true energy loss-curve.

2.3 Conclusions on the Range Calculations

The proton range deviation between the results from the compared MC programs is sub-
millimeter in the therapeutic range 50–230MeV. The exception are the ranges in water
from MCNP6, which applies different values for the mean ionization potential for water
Iw: the best correspondence between MCNP6 and GATE is achieved when the Iw value
in GATE is set to 73 eV. This value is somewhat lower than Iw = 78 eV, which is the
current recommended value by the ICRU (2016).
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Other parameters obtained from the proton range distribution, such as the range strag-
gling, transverse beam spread and the fraction of protons undergoing nuclear interaction,
agree with the available experimental results. The results for the transverse beam spread
in GATE is lower compared to the other MC programs, a conclusion that is also reflected
in other studies.

There are important aspects to be aware of when planning MC simulations and dur-
ing interpretation of the results (Paganetti, 2012). Awareness should be placed on how
different MC programs handle the implementation of their respective models for physics
interactions, which can be done either by theoretical models or through interpolation of
experimental data depending on the energy region that is studied. In this regard, certain
physics models and MC programs can be better suited to model a clinical proton beam
than others.

Due to the general agreement between the output values from the different MC pro-
grams, the choice of simulation framework may be made on inter-project compatibility
criteria, ease of use and the code availability and flexibility.

When comparing the analytical models of the proton range, the spline interpolation
model yields the highest accuracy. A sub-percent range calculation accuracy is obtained
for all models for energies above 90 MeV, and for the spline interpolation model above
10 MeV.

The simple analytical form of the differentiated Bragg-Kleeman formula is suffi-
ciently accurate to be used as an approximation of the individual proton’s energy loss.

The results of this work are applied throughout this thesis: Look-up-tables containing
energy-range values are created using MC simulations, to be used in conjunction with
spline interpolations. The differentiated Bragg-Kleeman formula is fitted to experimental
and MC calculated energy loss values — the result is a high-accuracy range calculation
of protons traversing the DTC.
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Chapter 3

The Digital Tracking Calorimeter
Prototype

In the last chapter, we explored the expected accuracy of proton range calculations using
MC simulations and parametric calculation models. Over the next few chapters, the
concept of the Digital Tracking Calorimeter (DTC) — application of a layer-by-layer
pixel detector for proton CT purposes — will be further described and evaluated, both
experimentally and by the use of MC simulations.

In this chapter, the first DTCprototype using the tracking calorimeter from theALICE-
FoCal experiment is described (Sections 3.1 and 3.2), followed by details about the
experimental measurements in a proton beam line (Section 3.3) and the required post-
processing of the acquired data (Section 3.4).

3.1 The Proof-of-Concept Prototype Detector

A high-granularity digital sampling pixel detector is made available through participa-
tion in the ALICE-FoCal collaboration at CERN (Rocco, 2016; Nooren, G. and Rocco,
E., 2015). It is one of the proposed upgrades of the detector experiment carried out
to provide an electromagnetic calorimeter for measurements of particle distributions at
large rapidity. The high pixel granularity allows for discrimination of direct γ and π0

particles at very high momenta. The detector’s small Molière radius of 11 mm enables
that the electromagnetic showers originating from the high energy particles can be fully
contained within the full calorimeter of 24 telescopic sensor layers, sandwiched between
tungsten absorbers. By counting the number of e− and e+ particles generated in the elec-
tromagnetic showers, the original energy of the incoming particle can be calculated.
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Figure 3.1: Schematics of a Monolithic Active Pixel Sensor (figure by H. E. S. Pettersen,
2017). Electron-hole pairs are liberated from the traversing charged particle in the epi-
taxial p-doped silicon layer. The charge carriers diffuse to the deep n-wells in the closest
neighboring pixels, where they are collected. The collected charge in the deep n-well is
read out through transistors, and, depending on the design, the signal is digitized before
being transmitted through the data lines.

3.1.1 The MIMOSA23 Sensor Chip

The Monolithic Active Pixel Sensor chip PHASE-II MIMOSA23 is applied in the pro-
totype electronics assembly in this work. This sensor is a Complimentary Metal-Oxide-
Semiconductor (CMOS) based digital high-granularity pixel sensor, with a schematic
design as shown Fig. 3.1. It is produced at the Institut Pluridiscipline Hubert Curien in
Strasbourg in France (Himmi et al., 2008). The size of the active area is 19.5× 20.9mm2,
with a 640× 640 array of 30× 30 µm2 pixels. The sensors have three different possible
thickness configurations of the active epitaxial layer: 14 µm, 15 µm and 20 µm. They
have a resistivity of either 10Ω cm or 400Ω cm. The chips were manufactured with dif-
ferent thicknesses and resistivities in order to assess and quantify their performance with
these different parameters.

The pixel data is read out line-by-line: The rolling shutter readout has a cycling time
of 642 µs. The readout is 1-bit digital with a programmable signal threshold to adjust for
electronic noise. This programmable signal threshold and the sensitivity of the chip are
configured by adjusting the voltages on the discriminators. In Nusselder (2014), the op-
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timal settings for the two configurable voltages (called “Vref1” and “Vref2”) were found
by analyzing cosmic muon data. More details about the specifications and performance
of the MIMOSA23 chips can be found in Rocco (2016) and Himmi et al. (2008).

Not all of the MIMOSA23 chips used in the experiment were working properly at the
time. A fraction of the chips did not transmit any information about which pixels that
were activated. The chips were either partially or completely dead, and may have been
destroyed due to electronic or mechanical failures, however a possible cause is that the
data transfer cables had broken, leading to a non-transmittal of the data. Such cables,
rainbow colored, may be seen in Fig. 3.2.

3.1.2 Geometry and Materials

Two MIMOSA23 chips are mounted side-by-side to form a module. Such a module
is shown in Fig. 3.2. Two modules are put on top of each other, thus one rotated at
180 degrees with respect to the other, one facing the other, enabling that four sensor
chips are placed at approximately the same depth in the longitudinal direction of the
detector, i.e. along the central beam axis. There is a 100 µm gap between the two chips
in a module, and when two modules are placed on top of each other there is a 90 µm
overlap of the sensitive areas of each module. The size of the sensitive area in a layer is
38.5× 38.5mm2 orthogonal to the beam direction.

Multiple sensor layers, there are 24 layers in total, are stacked behind each other,
interleaved with 3.3 mm thick tungsten plates acting as energy conversion material be-
tween the layers. A detailed description of the materials in a single layer is listed in
Table 3.1. By using the formula X−1

0 =
∑

i Vi/X
−1
0,i (Olive, K. A. (Particle Data Group),

2014), where Vi are the volume fractions of each material, the resulting radiation length
X0 is 4.2 mm. The total thickness of a layer is 3.975 mm, or around 32mmWET. The
radiation thickness of a single layer is 0.97 X0. In the first layer, the absorbing material
in the front end of the detector is a 0.02 X0 thick aluminum plate. In this way, the beam
is less degraded and scattered prior to reaching the first sensor layer, compared to the
situation when applying tungsten.

3.1.3 Detector Mounting and Trigger System

The calorimeter prototype is mounted onto a steel structure containing a system for liquid
cooling of the electronics and mounting of the data readout electronics, as well as support
for all the patch cables. The steel structure fixes three polyvinyl toluene scintillators to
the system. A vertical 1×4×0.5 cm3 scintillator, a horizontal 4×1×0.5 cm3 scintillator
and a 4×4×1 cm3 front scintillator were placed, respectively, 17.4 cm, 16.6 cm and 6.5
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Figure 3.2: Left: One MIMOSA23 chip connected to the Printed Circuit board (PCB).
Right: Two MIMOSA23 chips mounted on PCB which is glued onto a tungsten absorber
to form a module. The rainbow-colored readout cables are attached. Reprinted with
permission from E. Rocco.

Material Thickness [µm] Radiation thickness [X0] Density [g/cm3]
W absorber 1500 0.428 19.30
Silver glue 40 0.001 3.2
PCB 160 0.002 1.85
Silver glue 40 0.001 3.2
MIMOSA23 120 0.005 2.33
Air gap 170 0.000 006 0.001
W absorber 300 0.086 19.30
Cyano-acrylate glue 70 0.0002 1.0
W absorber 1500 0.428 19.30
Air gap 75 0.000 003 0.001
Total 3975 0.97 17.7

Table 3.1: The materials and their key properties, as used in the MC setup. The thick-
nesses are displayed both in terms of the geometric thickness and of the corresponding
radiation thickness in units of the radiation length X0. From Pettersen et al. (2017).

cm upstream of the front face of the detector. The scintillators are used as suppliers for
a trigger signal. Signals in coincidence from the scintillators trigger storage of an event.
An image of the detector setup with all the layers and support structures is shown in
Fig. 3.3, and schematically also in Fig. 4.1. A more detailed explanation about the setup
and trigger logics can be found in Rocco (2016) and Fehlker et al. (2013).
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Figure 3.3: The prototype detector setup. The modules are connected to the flat multi-
colored readout cables. These are in turn connected to a patch-panel distribution unit,
which facilitates the buffering and transmission of the 61 Gbps signal to FPGAs through
the patch cables. The sensor layers are not visible in the figure, these are located inside
the central part of the structure. From Rocco (2016).

3.2 Electronics, Readout and Data Acquisition

The patch cables lead to four 96-port Spartan Field Programmable Gate Arrays (FPGA),
which are further connected to twoVirtex-6 FGPAs for triggering andmultiplexing of the
signal. For each readout cycle, 24 layers× 4 chips× (640×640) 1-bit pixels are readout.
This corresponds to a data size of 4.9 MB. The buffer size of the system is 4 GB, so in
total 816 full readout cycles; called frames, can be read out in a single proton spill before
the slower data transfer to the Data Acquisition (DAQ) computer is performed.

The 1-bit readout signal gives no information about the intensity of the detected signal
from the traversing particles. A noise threshold determines if sufficient charge has been
collected in each pixel for the pixel to transmit a signal. This threshold is configurable
on a chip-to-chip basis.

The numbering scheme of the chips is: Chip = 4× Layer+ q, where q is the clockwise
quadrant. Further details of the readout of this chip can be found in Fehlker et al. (2013).

Since the sensor chips are read out in a rolling shutter-fashion, an important aspect of
the data quality is that no frames should be contaminated by earlier or later frames. In
other words, when a proton travels through the detector stack, it may be recorded partially
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by the current and by the next readout frame. A solution to this lies in the design of the
triggering setup: Only events with no trigger signal in the neighboring frames (in time-
wise ordering) are stored.

3.2.1 Readout Frequency and Proton Intensity Capacity

The high granularity of the pixels enables a high degree of proton event separation. The
cycling time of the rolling shutter corresponds to a readout frequency of 2 kHz. However,
a higher effective readout frequency feff can be achieved by accumulating np protons
in a single readout cycle: feff = np × 2 kHz. The granularity together with the track
reconstruction algorithm determines the saturation limit np,max. This saturation limit is
found through MC simulations. Note that the upper limit np,max depends on the spatial
distribution of the proton beam. If they are all bunched together in a thin pencil beam,
it is not possible to reconstruct as many tracks concurrently as in a uniformly spread out
proton beam impinging the whole detector surface, since the track density is substantially
higher.

3.2.2 Data Format and Conversion

The raw data format from the experiment is a multiplexed data stream containing trig-
ger information and the output of each of the 96 sensor chips. Additionally, pedestal
runs with information about sensor noise are also available. These data streams are de-
multiplexed and the pedestal noise is subtracted from the readout signal for each of the
sensor channels.

This data conversion was performed on the beam test data during a stay at the Utrecht
University in January 2015, by using the conversion software developed by Reicher
(2016) at Utrecht University. The resulting output was stored as event-by-event objects
containing the sensor layer number and pixel coordinates for each of the activated pix-
els in the ROOT framework. The output ROOT files were then applied in the analysis
described in the following chapter. An example of the output of a partial single readout
event (containing a single proton track) is shown in Table 3.2.

3.3 Experimental Test in a Proton Beam

The measurements reported upon in this study were performed in December 2014 at
KVI-CART in Groningen, the Netherlands. The cyclotron at the AGOR facility for Irra-
diations of Materials (AGORFIRM) delivers proton beams with energies from 40MeV
and up to 190MeV (Van der Graaf et al., 2009). The beam line is shown in Fig. 3.6.
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Hit # 1 2 3 4 5 6 · · · 418
Pixel X 308 -311 -313 -314 -320 -321 · · · -311
Pixel Y 412 -311 -32 -579 -575 514 · · · 362
Layer # 8 5 21 20 0 12 · · · 15

Table 3.2: Example of the preprocessed output from a single detector event from the 188
MeV proton beam. The full event contained 418 hits (activated pixels), many of which
were noise (isolated pixels) and parts of charge diffused pixel clusters where the proton
track passed through. The four physical sensor chips correspond to the four quadrants
in the coordinate system (-640,-640) → (640, 640).

Energy [MeV] Number of spills Run numbers Chip threshold
120 104 16, 17, 18, 19, 29, 31 5 · 10−4

139 12 45 5 · 10−4

151 23 43 5 · 10−4

160 20 41 5 · 10−4

170 112 12, 13, 21, 22, 24 5 · 10−4

180 23 39 5 · 10−4

188 75 4, 6, 9, 26 5 · 10−4

188 33 34, 37 10−5

Table 3.3: Overview over the beam test experiments performed using the calorimeter
prototype at KVI-CART in Groningen. The chip threshold is given in units of fake acti-
vation probability per pixel.

3.3.1 Overview over the Experiments

The beam tests lasted a week, and in the end 46 different experiments (runs) were per-
formed, each run consisting of 5–50 beam spills. Of these, 21 consisted of usable data,
the remainder being either pedestal (noise correction) data, inadequate proton beam qual-
ity or failed data acquisition. The extracted beam energies ranges from 120–188MeV.
An overview over the different runs at the different beam energies are given in Table 3.3.

3.3.2 Beam Specifications

The sensor layers have a surface area of approximately 4× 4 cm2, and during the exper-
iment, the proton beam was shaped to this same field size. The intensity of the beam
was set for delivering at most one proton per readout frame, with a detector readout fre-
quency of 1/(642µs) ≃ 2 kHz. The proton intensity in terms of particle rate is estimated
to have been approximately 1350 protons/s, this value is deduced from the finding that
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Figure 3.4: Left: Lateral positions of the incoming protons at the front face of the detec-
tor. Right: Lateral positions of the protons at their stopping position inside the detector.
Both figures are constructed with experimental data at all the available proton beam
energies.

about 67% of the readout frames contains proton tracks. See Table 3.4 for a comparison
between the number of readout frames and the number of reconstructed tracks.

The beam profile at the detector front face, as well as the lateral stopping positions of
the protons of all the beam energies is shown in Fig. 3.4. Each entry do not correspond
to a hit, but to the position of a reconstructed track. Some features can be seen in the
figure: A lower fraction of tracks are reconstructed in the upper right quadrant, this due
to a dead sensor chip in that area, and the beam has a slightly increased spread in the
deeper-laying layers: this is expected from the scattering.

The spatial distribution of the beam, in terms of the standard deviation of a fitted
normal distribution, is 7.5 mm at the front face and 8 mm at the stopping position. This
means that the increased beam spread, calculated by taking their quadratic difference, is
in the order of 3 mm. Using the integral form of the Highland formula (Eq. (1.6)), we
obtain a theoretical value for the scattering angle of θ0 = 126mrad. This corresponds to
a lateral deviation of 2.95mm, which is very close to the measured value.

The test beam energies were chosen with the motivation of applying the maximum
available energy, and thus measuring the corresponding maximum proton range, in the
multi-layered detector. Due to the high Z absorber material, the 188 MeV proton beam
is traversing through only the first 7 of the 24 layers: A beam energy of 450 MeV would
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Figure 3.5: Hitmaps from experimental data at 188 MeV. Each of the four figures repre-
sents a four-chip layer: The first three layers and the layer where the proton tracks come
to rest. Note that fractional areas or even whole sensor chips do not contain any data:
this is due to defect sensor chips, defect data cables or breaks in the connection between
them. Note also that the size of the pixel hit clusters increase towards the Bragg peak,
this can be due to the increased energy deposition.
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Aluminum degrader [mm] 60 45 35 27 17 8 0
Energy [MeV] 119.9 139.0 150.9 159.9 170.1 180.0 188.0
Energy spread [MeV] 1.4 1.1 1.0 0.9 0.7 0.5 ∼ 0
Readout frames 3719 241 819 762 4944 1334 2739
Reconstructed tracks 1576 87 408 408 3431 901 2010

Table 3.4: List of the beam energies applied at the KVI-CART beam test, the number
of readout frames as well as the number of reconstructed proton tracks at each energy.
Adapted from Pettersen et al. (2017).

Figure 3.6: Left: The proton beam-energy degrader at the AGOR facility at KVI-CART.
Nine aluminum plates can be placed in the beam, controlled remotely. Right: Schematics
of the beam test setup at the AGOR facility. Both figures from KVI AGORFIRM (2012).

have been needed in order for the protons to traverse the whole detector (all the 24 layers)
in the longitudinal direction.

In order to deliver the different beam energies, the beams were degraded by the pres-
ence by an aluminum absorber in the beam line. For details about the applied proton
beams; energies, as well as the different degrader thicknesses and the number of recorded
protons in each of the setups, see Table 3.4. An energy spread of up to 1.4 MeV is intro-
duced by the degradation. This energy spread was calculated using GATE simulations.
The energy spread increases with the thickness of the degrader following Eq. (1.11).
The beam degrader as well a schematic drawing of the complete beam setup is shown in
Fig. 3.6. More detailed beam specifications and the beam optics are described in Van der
Graaf et al. (2009).
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3.4 Data Post-Processing

3.4.1 Noise

There is a certain amount of unavoidable noise present in the beam test data. Prior to each
change of the beam parameters, as well as during the run, pedestal values were read out in
order to calibrate the noise level of the individual pixels. The process of pedestal removal
on the MIMOSA23 chips is described in Maczewski (2010), and this was performed on
the experimental data by using the readout software developed by Reicher (2016) at the
time of data retrieval for our present use of the data files.

The clusters generated by the proton tracks typically activate a quite large pixel area
due to the charge diffusion processes, as will be described and modeled in Section 4.3.
Therefore, it is quite straightforward to remove all the remaining noise, which normally
appears as isolated one- and two-pixel clusters.

3.4.2 Threshold Settings

A pixel in the MIMOSA23 chip is activated when its integrated photodiode charge has
reached a preset threshold value. The electronic noise inMIMOSA23 has been estimated
to be about 10 e− Equivalent Noise Charge (ENC) (Winter, 2009). The threshold is
defined as the signal intensity that is required for a pixel to be activated. In terms of
electronic noise, the fake rate can be defined, which is the fake activation probability
per pixel due to electronic noise. During the beam tests, different threshold values were
applied, corresponding to fake rates ranging from 10−5 to 5 · 10−4. A fake rate of 10−5

corresponds to 4 pixels per 640× 640 chip per readout. This fake rate is equivalent to a
signal threshold of about 26 e− ENC, found by using a Poisson distribution with a noise
level of 10 e− ENC:

P (λ = 10, k) ≈ 10−5 for k = 26 (3.1)

The choice of signal threshold determines the charge diffusion cluster size described
in Section 4.3. A separate study (Hansen, 2017) uses an analyticalmodel fromMaczewski
(2010) to determine the diffuse cluster size, this study confirmed the numbers presented
in this section.

3.4.3 Chip Sensitivity Calibration

The physical chips exhibit variations in the epitaxial layer thicknesses and resistivities.
A thicker epitaxial layer will increase the number of generated charge carriers and the
area over which they are able to diffuse: differences in the charge collection area (cluster



60 3. The Digital Tracking Calorimeter Prototype

Chip number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
al

ib
ra

ti
on

 f
ac

to
r

0.5

1

1.5

2

2.5
150 MeV
160 MeV
170 MeV
180 MeV
188 MeV

Figure 3.7: The chip sensitivity calibration factors f(Chip), applied for obtaining a
relatively uniform cluster size distribution in the different layers. For stability-checking
purposes, a set of calibration factors has been made for all datasets at different energies.
It is found that the calibration factors have a higher variation in the Bragg peak area
for each energy, since it is harder to accurately model the energy deposition when the
energy deposition is high.

sizes) are thus observed. This sensitivity calibration was performed in this project on
proton data from the beam test runs.

Calibration of the sensitivity of each chip, i.e. a scaling factor in the Edep calculation
of Eq. (4.8), ensures that the responses of the physical chips are uniform throughout the
whole calorimeter.

The sensitivity calibration of the sensors was here performed through identification
of a scaling factor f(Chip) for each of the 28 chips, corresponding to 7 layers, for which
there exists data. In the first few sensor layers, the variation of energy deposition is
small, so that the scaling factors for a given layer exhibit low variation between the
datasets of different energies. In the Bragg peak regions of the different energies, the
energy deposition variation is high, such that there is a lesser agreement between the
scaling factors of the different energies. In Fig. 3.7, this is shown through a quite good
agreement below chip number 16, and less agreement above.

A study from Zhang (2017) obtains calibration factors for the same detector using
data from beam tests with 50 GeV and 100 GeV electrons: the calibration factors are of
similar magnitudes to the ones found here.
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Cosmic Muons
Proton Beam

Figure 3.8: Per-chip correction values applied for the lateral chip alignment, shown
here in terms of lateral shifts in the x and y-directions. Values from cosmic muons taken
at Utrecht University and from the proton tracks are shown.

3.4.4 Chip Alignment Correction

In order to correct for misalignments from the fabrication process, the layers need to
be aligned in software before the data analysis. Left unaligned, systematic lateral shifts
would occur in the proton tracks between each layer, which would reduce the quality and
efficiency of the track reconstruction.

Position calibration has been performed at Utrecht University by aligning the tracks
of cosmic muons; this has resulted in alignment correction values for each chip. The
alignment correction defines lateral shifts and rotations of the chips (Zhang, 2017).

In addition, it was here attempted to recreate the same chip alignment values with the
proton beam data, by finding the values that would result in the smallest amount of lateral
shift in the reconstructed proton tracks: the implemented method only considers trans-
lation and not rotation. The comparison between the two alignment methods is shown
in Fig. 3.8: The values obtained using cosmic muons was applied on the experimental
datasets for alignment correction.
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3.4.5 Dead Sensor Chips

As described earlier, some of the sensor chips used were either completely or partially
dead, i.e. they did not transmit any information about the activated pixels. A few exam-
ples of this can be seen in Fig. 3.5. In order to account for this deficiency in the data
quality, the track reconstruction algorithm (as described in Section 4.4.1) must be able to
correct for tracks traversing the dead areas. By extrapolating the track position through
the dead areas, proton tracks can still be reconstructed through such regions. However,
tracks ending in or near dead areas are discarded due to the importance of their last energy
deposition position in the detector when in finding the residual range.



Chapter 4

Benchmarking the Digital Tracking
Calorimeter Prototype

In the last chapter we introduced the Forward Calorimeter as a High Energy Physics
prototype detector, along with a presentation of number of data post-processing tech-
niques. In this chapter, we will describe the application of this detector for proton CT
purposes.* The detector is suited for proton CT purposes due to many of its properties,
such as the very high pixel granularity (precision), the layer-by-layer geometry (range
determination) as well as the fast readout speed (speed matching the clinical workflow).

In this context, the detector and the detector readout systemmust be able to record data
with a high enough quality, enabling the reconstruction of tracks of individual protons,
yielding both the proton’s initial velocity vector as well as its track length.

We begin with an overview of the software used in the study: the Monte Carlo soft-
ware in Section 4.1 and the custom analysis framework developed for this project in
Section 4.2. This is followed by the data analysis procedures: In Section 4.3 the pro-
cess of modeling the charge diffusion in the sensor chip is described. The proton track
reconstruction process is described in Section 4.4. The resulting reconstruction density
capabilities are calculated in Section 4.5. The range calculation of individual and multi-
ple protons are outlined in Section 4.6.

4.1 Monte Carlo Modeling

In the previous chapter we described the geometrical properties of both the DTC and
the experimental setup during the beam test, i.e. with scintillator triggers and beam de-
graders. A MC simulation has been performed of the complete detector setup includ-
ing the above-mentioned components, as described in Section 3.1.3. The MC software

*The results from this chapter have been published in Pettersen et al. (2017).
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Figure 4.1: Left: The MC implementation of a detector module. Right: The complete
calorimeter consists of 24 sensor layers, also included are the three scintillators located
upstream of the prototype detector. From Pettersen et al. (2017).

GATE 7.0 for Geant4 9.6.4 was applied for this purpose.
Results from many different GATE simulations have been applied when develop-

ing the analysis framework. The same analysis methodology is applied to results from
both MC simulations and experiments, the only differences being the readout format and
whether or not the charge diffusion model described in Section 4.3 should be applied.

4.1.1 Geometry Implementation in GATE

The geometry applied in the simulations consists of three scintillators and the prototype
DTC detector. The geometry of the detector setup is described in Section 3.1.3 and has
been implemented in GATE accordingly. The detector setup as visualized in GATE is
shown in Fig. 4.1.

Physics Builder List

In Section 2.1 different MC programs were presented, together with examples of how
the physics settings were setup. The GATE program as applied in this chapter is set up
similarly, using the QGSP_BIC_EMY physics builder list.

The values for the production thresholds are set to 0.1 mm, i.e. a new particle from
a decay or collision is required to have an energy corresponding to at least this value
in order for the particle to be generated, otherwise the energy is deposited locally. The
minimum proton step size is set to 0.05 mm, and it decreases towards the Bragg peak
depth. The adjustable mean excitation potential for water is set to Iw = 75 eV to match
the Iw value used in the PSTAR data tables.
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Beam Modeling by the use of a General Particle source

The proton beam at KVI-CART was described in Section 3.3. The beam model is sim-
plified for analysis purposes (see Section 4.1.2), it is represented by a so-called source in
the GATE simulations. The source is defined as a General Particle Source-based mono-
energetic beam using the nominal energies of the beam test. The protons are emitted
from a square 4× 4 cm2 plane, with no angular deflection.

Monte Carlo Information Through Scoring

The scoring describes the variables that are stored during each MC simulation. Every
interaction leading to an energy deposition event in a Sensitive Volume (SV) is written
to an output file. The epitaxial layers of the 96 separate MIMOSA23 chips, each with a
thickness of 14 µm, are defined as separate SVs. In total, there are 41 million pixels in
the DTC. If they had all been defined as individual SVs, a rather large number of volumes
would have had to be stored in the memory and the simulation performance would have
been been degraded in terms of simulation time and memory usage.

Any comparison between MC and experimental data is here performed on a data
set from the MC simulation with scoring only in the sensor layers. However, during
the development of the analysis tools, it is helpful to have available fully scored MC
simulations, so that it is possible to obtain information for calculation of entities such as
scattering angles, accurate proton range distributions (lateral and longitudinal) and the
distributions of the different interaction types occurring. In Fig. 4.2, an illustration of the
two simulations with different scoring strategies are shown. In the simulation performed
for the illustration, a 245 MeV proton beam with 50 000 primaries is used, and the DTC
detector modeled with 3 mm tungsten energy absorber layers.

4.1.2 Simplifications in the Monte Carlo Design

Several simplifications were made during the design of the MC simulations of the exper-
iment. While the geometry of the calorimeter itself is relatively accurately implemented
(including estimations of the energy loss due to the trigger scintillators), no beam optics
were included in the simulations.

The beam is implemented as a monoenergetic, uniformly spread proton beam. By
ignoring the initial energy spread of the beam (due to the aluminum energy degraders),
the uncertainty of the MC reconstructed proton range is only influenced by the detector
construction and analysis methodology. The comparison between MC and the experi-
mental data may suffer due to this simplification, however the properties of the detector
become more transparent, and this is the motivation for such a simplification in this stage
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Figure 4.2: Total energy deposition in ”full” simulations (i.e., primaries and secon-
daries are scored in all volumes) and ”chip-only” simulations (i.e., only the epitaxial
layers of the sensor chips are scored).

of the work. The effects on the range uncertainty by introducing a varying energy spread
from energy-degrading water phantoms will be discussed in Chapter 5.

The beam is assumed to be uniformly distributed across the ∼4× 4 cm2 sensor area
in the MC simulations. This in contrast to the collimated, approximately Gaussian dis-
tributed beam used in the beam test experiment. This simplification was introduced in
order to guide the development of the track reconstruction algorithm, as well as to find re-
liable numbers for the maximum possible beam intensity or track density that is possible
to reconstruct with the implemented reconstruction algorithm.

Any variations in the thickness of the epitaxial layer between the different sensor
were not implemented. The sensor chips come in different configurations, having 14
µm, 15 µm and 20 µm epitaxial thicknesses: the epitaxial layer of each sensor layer
has been defined to be 14 µm. This effect, however, is assumed not to degrade the final
data quality: differences in the charge collection sensitivity arising from a variation of
epitaxial thickness are reduced through the per-chip sensitivity calibration, which was
be discussed in Section 3.4.3.

4.2 The Developed Software Framework

A software framework was developed during this project for the management, process-
ing, reconstruction, analysis and presentation of data from the beam test and from the
MC simulations. It is of a modular design and it is object-oriented, such that it should be
simple to extend the software with the following purposes in mind: to enable analysis of
data from multiple sources such as the next-generation readout electronics and different
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MC simulation software tools; to give the user a broad selection of different geometrical,
physical and reconstruction models; to include a more extensive proton CT simulation
with complex phantoms and positional trackers before and after the phantom or patient;
and to facilitate further development and usage of the software by making it available as
a analysis library.

The software framework is called the Digital Tracking Calorimeter Toolkit, and it
is available for download at GitHub (Pettersen, 2015). The software is written in C++
and ROOT, with some auxiliary tools written in Python and user scripts written in bash.
Several hands-on teaching workshops have been held at the University of Bergen in order
to demonstrate the usage of the software, and summaries of these are available at the
GitHub project page. In total the framework, including tools consists of approximately
20 000 lines of code.

Some of the functionality in the code was already available in the existing ALICE-
FoCal prototype framework designed byReicher (2016). However, due to the differences
between the data analysis requirements for electromagnetic showers and curved-path
proton tracking, between the MC simulations and the desired output, and due to the fact
that it is simpler to write code from scratch than to modify large parts of existing code,
this framework was developed. In addition, the process was very helpful in developing
appropriate analysis tools.

4.2.1 Overview over the Software Framework

The design of the software framework reflects the geometry of the detector, the structure
of the data readout as well as the different parts of the analysis workflow, as shown in
Fig. 4.3. The estimation of the proton path through the patient or phantom (the so-called
Most Likely Path, orMLP) has not yet been implemented in the project as all the available
experimental results were acquired without imaging phantoms. The so-called “simplified
analysis” is a shortcut for validating the results by applying the MC generated proton
identification tags for perfect track reconstruction, and is used extensively in Chapter 5.
As an overview of the framework structure, the most used classes and their functionality
are listed below:

• The DataInterface class: The interface to the beam test data in the data format
specified in Section 3.2.2 as well as to the output ROOT files generated by the
GATE software. Returns the data either as Hit objects or as histograms representing
the sensor layers.

• The Layer and CalorimeterFrame are collections of histograms of hitmap data
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Figure 4.3: The analysis chain in the software framework. The estimation of the proton
path through the patient or phantom (the so-called Most Likely Path, or MLP), has not
yet been implemented in the project.

from a single layer and the complete calorimeter, respectively. A method is imple-
mented to find all activated pixels in the histogram, returning Hit objects.

• The Hit class: An object representing a hit, a single activated pixel. The object
includes the 3-dimensional position and (if originating from MC) the ID and the
energy deposited by the activating proton. The available class methods are so-
called “getters” and “setters” such as Hit::getX() and Hit::setEventID(int). A
container class Hits is available with organizational and optimization features, and
methods to implement the hit clustering algorithm described in Section 4.3.7.

• The Cluster class: While the Hit object is a single activated pixel, the Cluster
object represents a spatially connected group (called a cluster) of activated pix-
els. In addition to the spatial (positional) information of the center-of-gravity of
all connected Hit objects, its member variables also include information about the
number of pixels representing the cluster. The charge diffusion model, as described
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in Section 4.3, is implemented in the Cluster class. A container class for multiple
Cluster objects is available, it is called the Clusters class. Various track recon-
struction algorithms have been implemented in the Clusters class.

• The Track class: All Cluster objects from a single physical (or simulated) proton
track are collected in a single Track object. It is here that the many track analyses
are implemented: The estimation of track properties such as scattering angles and
interaction types (slowing-down or inelastic collision), the implementation of the
Bragg curve model fit from Section 4.6.2 to calculate the residual range and thus
the initial energy of the track and extraction of the initial vectors of the track.

• The Tracks class implements some optimizations which need such as removal of
un-physical paths, tracks ending in known dead areas of a chip, tracks leaving the
detector laterally and resolving colliding tracks (λ-shaped track segments).

By using the classes listed above, it is possible to write relatively compact user func-
tions to perform all parts of the analysis. Tools that automate the track reconstruction
have been developed, and different parts of the analysis are fully customizable using the
Constants.h configuration file.

The automation tools enable a multi-threaded version of the code, working on sep-
arate data sets, through simultaneous execution of the program while altering both the
program input and output. The automation tools are provided as bash script files.

See Appendix C for the different program files described together with their main
functions. See Appendix D for examples of code, how to read the data files and how
some of the algorithms are implemented.

4.2.2 The Modularity of the Framework

The framework is built as a class library in order to simplify the usage of and increase
the readability of the analysis code. By using the inherent functionality of the ROOT
framework, the most common objects have a rich I/O functionality. As an example, after
the track reconstruction procedure, the Tracks object is automatically saved to disk, and
the user may choose to load this file next time instead of performing the same track
reconstruction multiple times. This is especially useful then analyzing a set of multiple
tracks many times with small perturbations to the analysis technique.

Most of the implemented algorithms were originally developed for this project. As a
result of this, there may be more than one applicable approach. In Section 4.3, multiple
models for performing the charge diffusion are presented. Likewise, there are different
ways to perform the track reconstruction described in Section 4.4.1. In the configuration
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Figure 4.4: The Python GUI for the creation of different DTC geometries. Based on the
applied settings, a GATE .macmacro file is generated for the simulation of the defined ge-
ometry. The program code is available in the GitHub repository for the software frame-
work (Pettersen, 2015).

file Constants.h the user is given the possibility of choosing between all the differ-
ent implemented models. Different geometries are also available, such as the Forward
Calorimeter and the many different optimized geometries presented in Chapter 5.

4.2.3 Software Tools

Some of the auxiliary software tools developed for this project are described in this sec-
tion:

Automatic Geometry Creation

A time-consuming task in GATE (and any MC program) is the definition of the geom-
etry files. Small changes to e.g. the energy absorber thickness must be propagated to
the other modules in the geometry, since they are sequentially defined in the same co-
ordinate system. To that end, a Python program has been developed to automatically
generate geometry files for the DTC. This is based on simple input variables such as en-
ergy absorber material and thickness, the number of layers and the thicknesses of other
modules. A usage example of the program is shown in Fig. 4.4.

Energy Loss Calculations

One important calculation routinely performed is that of the proton’s energy loss in dif-
ferent media. This calculation is used for finding the energy loss from components in
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Figure 4.5: Time requirements of the full MC processing including data retrieval, track
reconstruction, track fitting and visualization. The time requirements for two different
MC simulations are shown, both simulations are applying the 3.5 mm aluminum absorber
geometry from Chapter 5.

front of the detector, such as the scintillators or the initial energy absorber, or inside the
sensor chips. These energy loss values are later used to correct the initial energy estimate
of the individual tracks.

An accurate calculation of the energy loss requires full knowledge of all parameters
that enters into the Bethe equation, Eq. (1.1), and then by performing a numerical inte-
gration. Alternatively, energy dependent stopping power values for a range of different
media may be acquired from the PSTAR database (Berger et al., 2005).

A Python program was written for the simplification of this process: Look-up-tables
(LUTs) of the energy loss values of different materials from PSTAR are loaded into the
memory, and 3rd degree polynomial splines are made in order to perform accurate in-
terpolations between the data values. In the program, the user defines the geometry and
materials, and the range or energy loss is then calculated by numerically integrating the
LUT values. The program is available on GitHub (Pettersen, 2017a).

4.2.4 Computational Efficiency

The software framework has been developed during the project to accommodate the re-
quirements of the analysis workflow. Efforts have been made regarding the computa-
tional efficiency of the code. A typical track reconstruction task with MC data in an
optimized geometry as will be described in Chapter 5 consists of a 160 MeV beam in-
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teracting with 22 sensor layers before stopping. The time required for the concurrent
analysis of 200 protons is about 0.7 seconds. Of these, 0.6 seconds are spent on the track
reconstruction and the rest on visualization, data retrieval and analysis. See Fig. 4.5 for
the dependency of the number of protons in the analysis on the reconstruction time. The
numbers are found on a Xeon E5520 CPU at 2.27 GHz, utilizing a single core for the task.
The reconstruction task can be executed in parallel on several CPU cores, decreasing the
required time spent on the analysis.

4.3 Charge Diffusion of the Proton Track Signal

Large clusters with sizes varying normally between 1 and 35 pixels are activated by the
charge diffusion of electron-hole pairs, the pairs being liberated in the epitaxial layer of
the sensor chip by a passing proton and then thermally diffused. This diffusion effect
cannot be modeled straightforwardly in MC simulations due to the low electron energies
associated with the charge diffusion process.

The correct characterization of the charge diffusion process enables a conversion from
the energy deposited by a passing proton in the epitaxial layer of the pixel (Edep) and the
number of pixels activated by the charge diffusion process (the cluster size). In this
section, we will apply models of different complexities to describe the charge diffusion
process, with the aim to find the relationship between the deposited energy and the cluster
size. This relationship will then be used to guide the modeling of a Gaussian Diffusion
function for generating realistic charge diffused clusters from the MC output.

It should be noted that this modeling is necessary due to the digital pixel readout
scheme. The measured value is the number of pixels having a signal above a certain
threshold, thus the charge diffusion process must be modeled in order to regain a measure
of the initial total charge: that is a necessary property for identifying the proton’s Bragg
peak. This is in contrast to analog readout detectors (as described in Price et al. (2015)
for a proton CT application) where the summed intensity of all pixels in a cluster is
proportional to the energy loss of the passing proton.

4.3.1 Characterization of Cluster Size Distributions

The sizes of the clusters increase with the proton’s energy deposition, and the shapes of
the clusters are approximately Gaussian. A detailed view of a portion of the first layer is
shown in Fig. 4.6.

In Fig. 4.7 several charge diffused clusters are shown, they are grouped as a function
of their cluster size. It can be seen from Fig. 4.7 that the clustering identification method
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Figure 4.6: A portion of the (1280×1280) pixel hit map from the first layer in the 170
MeV beam data. Each traversing proton activates a large pixel cluster. Note features
such as hot (always-activated) pixels due to their high values (in red, green and yellow),
summed over many data frames, and noise, identified as single-pixel hits.

is not perfect, since several of the identified clusters are made up of smaller clusters
merged together.

In Fig. 4.8, the cluster size distribution is shown for different detector layers, using
beam test data extracted from the 170MeV runs. The mean values of the distributions do
not increase monotonically with layer depth, this is partly due to the different sensitivities
of the sensor chips (see Fig. 3.7).

4.3.2 Modeling the Charge Diffusion

Ultimately, we must be able to calculate the energy deposited by the proton traversing
through the sensor chip, so that it is possible to model the Edep as a function of depth
using the Bragg-Kleeman equation. In order to find a relationship between the Edep and
the resulting cluster size, we will require the following information:

i) Reconstructed proton paths, enabling the calculation of the remaining energy of the
passing proton in each cluster. The remaining energy is the energy giving the proton
its residual range from the position of the cluster depth to the proton’s stopping
depth, using the process as described in Section 4.6. This reconstruction process is
discussed later, however the result is applied here.
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Figure 4.7: Examples of charge diffused pixel clusters, grouped in rows by their cluster
size (the number of activated pixels in cluster). Each sub-figure is a small portion of the
hitmap (as exemplified in Fig. 4.6), with the individual pixels shown in the (x, y) axes.
The cluster size is shown in the corner of each figure. Note that some of the larger clusters
actually are combined smaller clusters, located very close to each other: a correction to
this will have to be applied.
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Figure 4.8: Cluster size distributions in the various sensor layers, data from the 170
MeV beam test runs.
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Figure 4.9: Correlation plot between the Edep and the cluster sizes. The cluster sizes are
calibrated using the chip sensitivity calibration factors, and the Edep is calculated using
the energy-loss tables together with information about the sensor layer depth relative to
the nominal range.

ii) Sensitivity calibration factors, for each of the sensor chips in order to ensure a uni-
form response to the same signal throughout the detector: See Section 3.4.3.

iii) TheEdep in silicon, calculated from the remaining energy. A simple parametrization
from the energy loss tables in Berger et al. (2005) yields

Edep,Si = 43.95 · E−0.748. (4.1)

The analysis following these steps is performed using all available experimental data
for all beam energies. For each reconstructed proton, its constituent clusters (one in
each sensor layer) are calibrated with the calibration factor f(Chip), and its local Edep is
calculated Eq. (4.1). The resulting two-dimensional histogram is shown in Fig. 4.9.

AModel of Charge Diffusion deduced from “First principles”

An analytical model of the charge diffusion process for MAPS chips was proposed in
Maczewski (2010). This model was adapted to the MIMOSA23 chips used in the proto-
type calorimeter in a collaboration project together with a MSc student (Hansen, 2017).
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Figure 4.10: Schematics of a proton’s path through a MIMOSA23 chip (not to scale).
Electron-hole-pair ionization events from the proton’s path are shown as the shaded con-
ical areas.

It is in the model assumed that a traversing proton is ionizing the matter and releasing
electron-hole pairs continuously in the epitaxial layer of the sensor. With reference to
the variables displayed in Fig. 4.10, the probability ρ that a charge carrier ejected from
P should hit the pixel layer atM , with R⃗(r, ϕ, θ) =

−−→
PM is

ρ(R⃗) drdϕ =
hr

4π|R⃗|3
exp

(
−|R⃗|

λ

)
drdϕ, (4.2)

where h is the distance between the pixel layer and the ionization event, r is the distance
between M and P , projected onto the pixel layer, and λ is the single free parameter to
the model which accounts for the attenuation length in the epitaxial layer: it must be
determined experimentally.

TheEdep distribution in each sensor layer has been computed using GATE simulations
of the calorimeter geometry. The mean energy required to create electron-hole-pairs
in silicon is Eg = 3.6 eV (Michaelson, 1977), and consequently the number of ejected
carriers is Nc = Edep/Eg. The typical Edep of a proton in the 14 µm silicon epitaxial layer
between 15 and 60 keV, and thus Nc is generally between 5000 and 15000.

Themodel was numerically integrated to account for all possible values of h, andmul-
tiplied by Nc. The resulting electron intensity was mapped to a (sub-) pixel mesh, where
the incident position within the pixel was randomized. A lateral profile of the electron
intensity is shown in Fig. 4.11. The intensity distribution assumes that one electron-hole
pair is generated every µm. Each pixel consists of 9× 9 sub-pixels of 3.3× 3.3 µm2.

From the two-dimensional intensity profile together with the knowledge about the
number of electrons necessary in order to activate a pixel (the number 26 e− was found
in Section 3.4.2), it is possible to find the number of activated pixels. The resulting
relationship between Edep and the number of activated pixels, n, is shown in Fig. 4.12
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Figure 4.11: Intensity distribution profile for an incident proton on a sensor chip. From
Hansen (2017).

for λ = ∞ µm* and it can be parametrized as:

n = 16.80 · E 0.566
dep . (4.3)

A study fromZhang (2017) applies the same analytical model to the ALICE-FoCal proto-
type studied in this work, using data from high energy electrons. The best correspondence
between the model and the experimental data is there also obtained by using λ = ∞.

A “Gaussian Intensity” Model of Charge Diffusion

Another way of modeling the relationship between the cluster sizes and the deposited
energy has been proposed in Spiriti et al. (2017), there applied for the (analog output)
MIMOSA18 and the (digital output) MIMOSA26 sensor chips. With the assumption that
the charge density per unit area dq(r)/dS is Gaussian distributed, we can write

dq(r)
dS =

Qtot

2πσ2
exp

(
− r2

2σ2

)
, (4.4)

whereQtot = Edep/Eg is the total number of generated electron-hole pairs, Eg is the mean
energy required to create an electron-hole pair, σ is the width of the charge diffused area

*This value yielded the lowest χ2 value when compared with the data in Fig. 4.9. The physical inter-
pretation is that the attenuation term can be neglected and only the isotropic diffusion is responsible for
the describing the charge diffusion process.
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and r is the distance from the center of the proton track. Only pixels having a charge
density higher than a threshold T are activated (within r ≤ rT ), and we get the relation

dq(rT )
dS = T =⇒ r2T = 2σ2 ln

[
Edep

2πEgTσ2

]
(4.5)

and the number of activated pixels (each with size p) is

n =
πr2T
p2

= 2π
σ2

p2
ln
[

Edep

2πEgTσ2

]
. (4.6)

Using the values Eg = 3.6 eV and p = 30µm, the most likely values for σ and T can
be estimated by fitting the model to the experimental data shown in Fig. 4.9. This is
done in the next section (see Fig. 4.12), with the resulting fit variables σ = 32.9µm and
T = 0.204 charge carriers per µm2.

A Phenomenological Model of Charge Diffusion

Finally, a relationship between Edep and the cluster sizes (n) can be modeled with the
function n = a · E b

dep, or, inversely, Edep = a−1/bn1/b. This is the function shape found
from the “first principles” analytical model.

A least-squares fit is performed on the available experimental data. Each Edep col-
umn in the 2D histogram of Fig. 4.9 is converted to a point in a scatter plot, using the
mean value and asymmetric error calculated from the Edep bins on the x axis in the 2D
histogram. The points are, during the fitting procedure, weighted relative to the number
of entries in the corresponding column. The curve fits are applied on this scatter plot,
shown in Fig. 4.12, rather than on the 2D distribution in the histogram.* This procedure
yields the parameters

n = 7.85 · E 0.727
dep (4.7)

Edep = 0.0586 · n1.376 (4.8)

The curve given by Eq. (4.7) is shown in Fig. 4.12. The uncertainty of Eq. (4.8) is
found by propagating the error in the two fitting parameters a, b. The covariance matrix
from TMinuit gives the fit errors as σa = 0.077 and σb = 0.022. The covariance is
σab = −0.0011.

σEdep/Edep =

√
σ 2
a

(
∂Edep

∂a

)2

+ σ 2
b

(
∂Edep

∂b

)2

+ 2σab

(
∂Edep

∂b

)(
∂Edep

∂a

)
(4.9)

=
1

b2

√
σ 2
a (b− 1)2 + σ 2

b (b− ln(n/a))2 + 2σab(b− 1)(b− ln(n/a) (4.10)

*The fitting procedure was performed on the scatter plot, since it is much more straightforward to fit
scalar functions to scatter plots compared to fitting them on 2D histograms.
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Model Function shape χ2 value
First Principles n = 16.8 · E 0.57

dep 0.16
Gaussian Intensity n = 7.56 · ln Edep

5000
0.042

Power fit n = 7.85 · E 0.73
dep 0.027

Table 4.1: Different charge diffusion models: Function shapes and χ2 values.

Inserting these values we get a relative error of about 7% at n = 5 and 2% at n =

25. It must be noted that the error in Edep at this stage will not be propagated further
to the final range uncertainty that will be calculated in Section 4.6.3 — as that range
uncertainty is calculated from the width of the observed distribution of the individual
range calculations.

4.3.3 Comparison of the Different Charge Diffusion Models

Acomparison of the charge diffusionmodels has been performed, with results in Fig. 4.12.
The different models are evaluated in terms of how well they explain the data, such as
with the χ2 metric. The resulting χ2 values that are obtained from the TMinuit library
are listed in Table 4.1.

As the phenomenological model yielded the lowest χ2 value, this relationship will be
used to guide the modeling of the charge diffusion process using a Gaussian diffusion
model in the next section. The Gaussian diffusion model will provide realistic cluster
shapes from the MC simulation output. The correct cluster size distribution should then
be obtained if the modeling is performed in concordance with Eq. (4.7).

Some caveats in the First Principlesmodel were listed in Hansen (2017): The energy
deposited by the passing proton was defined to be the most probable value in a Lan-
dau distribution, rather than sampling from the distribution itself: The error from this is
asymmetrical, and the long tails in the distribution might increase the charge diffusion
radius.

The calculation of Edep for each of the cluster positions is sensitive to minuscule dif-
ferences between the MC modeling and the experimental parameters during the beam
test. The large spread in the correlation plot (Fig. 4.9) is a result of this. More exper-
imental data at a larger span of Edep values is needed in order to accurately model the
charge diffusion process. A specialized beam test performed by gradually increasing the
Edep of the incoming protons, impinging on a single pixel layer, would provide a better
suited dataset for the modeling performed in this section. At this stage, all the proposed
models are able to adequately describe the data.
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Figure 4.12: Correlation data for the Edep and the cluster sizes: Edep is calculated us-
ing the energy-loss tables from Berger et al. (2005). In this graph the mean value and
the asymmetric standard deviation values are shown for each of the Edep bins in the his-
togram of Fig. 4.9, for purposes of curve fitting. Three curves are shown: The analytical
charge diffusion model based on first principles, a Gaussian intensity charge distribution
model and a power fit to the experimental data using Eq. (4.7).

4.3.4 A Gaussian Diffusion Model for Monte Carlo Simulations

The MC simulations do not produce extended cluster areas, as the complete energy de-
position process is approximated to occur inside a single pixel. An accurate model of this
process would require a very detailed and time-demanding simulation of electrons down
to thermal energies. A Gaussian diffusion model is proposed, with the goal to reproduce
both the mean value of the experimental cluster sizes (Eq. (4.8)) and the distribution of
shapes as seen in Fig. 4.7.

Themain procedure in theGaussianmodel is to convolute a 2D array ofMC simulated
hits with a Gaussian distribution, in which the σ parameter depends on the Edep :

i) For each of the hits, generate a Gaussian distribution in (x, y) surrounding the hit.
The standard deviation of the Gaussian should depend on the deposited energy in
the pixel’s epitaxial layer: we define σ = αE β

dep.

ii) The Gaussian is sampled N times in order to introduce statistical uncertainties, and
thus n ≪ N pixels are defined to be activated in the pixel area surrounding the
original pixel. n is the number of unique pixels from the N sampled positions.
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Figure 4.13: Output cluster sizes using the Gaussian charge diffusion model.

iii) This process is performed iteratively to correctly determine the values α , β and
N . By matching the cluster size distributions arising from the above model with
experimental data, the values α = 0.31 keV−1 and β = 0.29 are obtained.

iv) In the same way, by applying N = Edep · 0.68 /(keV/µm), the shapes of the gen-
erated clusters should have a distribution corresponding to the average sizes of the
measured clusters in the experimental data.

The resulting cluster sizes generated from this model is shown in Fig. 4.13, where the
procedure is performedmultiple times at smallEdep increments. The results are presented
there together with the curve defined by Eq. (4.7).

4.3.5 Results of the Chip Sensitivity Calibration

A model for the charge diffusion has been presented in this section. A comparison be-
tween the model and the experimental data is presented in Fig. 4.14, where the experi-
mental data represents the measured values for the size of the charge diffused clusters,
and the charge diffusion model is applied on the MC dataset. The different datasets used
to this end were described in Section 3.3.2. In both cases, the cluster sizes have been
converted into keV/µm, this to facilitate the chip sensitivity calibration which was per-
formed on the Edep values. The calibration factors have a higher variation in the Bragg
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Figure 4.14: Average energy deposition in each chip, applied as a validation of the
charge diffusion model applied on the MC dataset and as a validation of the chip sensi-
tivity calibration on the experimental data. From Pettersen et al. (2017).

peak area for each energy, since it is harder to accurately model the Edep when the energy
loss gradient is high.

4.3.6 Effect of Signal Threshold on Cluster Sizes

Most of the data taken during the beam test was acquired using a preset signal threshold
value of 26 e− ENC. In addition to this dataset, a single run was acquired with a lower
signal threshold of 22 e− ENC. The lower threshold run contains approximately 700
protons with an initial energy of 188 MeV. Using this additional run it, is possible to
calculate the effect of a lower signal threshold on the cluster size distribution.

The mean cluster size in each layer was found when comparing data taken with the
normal threshold with data from the lower threshold run. The clusters in the lower-
threshold run has a 23% ± 5% increase in the number of activated pixels. The mean
cluster size values from the two runs are listed in Table 4.2.
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Layer 0 1 2 3 4 5
Normal Threshold 7.43 5.65 9.20 6.58 11.49 12.05
Lower Threshold 9.46 6.53 11.66 8.11 13.64 15.22
Relative increase 27.3% 15.6% 26.7% 23.3% 18.7% 26.3%

Table 4.2: Mean cluster sizes (in terms of number of activated pixels) using normal
(26 e− ENC) and lower (22 e− ENC) signal threshold values. The experimental data was
acquired with a beam energy of 188 MeV.

4.3.7 Cluster Identification Algorithm

Each traversing proton activates a cluster of pixels through charge diffusion process, and
these clusters must be identified. All activated pixels, or hits, surrounding a proton track
should be incorporated into a single cluster. Examples of different cluster shapes were
shown in Fig. 4.7.

The clustering is performed through a simple neighboring algorithm: For each hit,
check if any of the eight possible neighboring pixels have been activated. This algorithm
is run recursively on all the activated neighboring pixels. The resulting Cluster object
is then stored, having a defined center-of-mass position and the cluster size value.

Some of the larger identified clusters are actually composed of two or more smaller
clusters located very close to each other. A more complex algorithm might be able to
disentangle such features, such as a circle-locating Hough transform (Ballard, 1981) or
an erosion-filtering approach, however due to the simplicity and efficiency of the simple
neighboring algorithm, none of these algorithms have (yet) been implemented. The post-
processing of the reconstructed tracks takes this into account, and when two tracks meet
in a single identified cluster, the cluster is split into two new clusters: See Section 4.4.2
for more details.

4.4 Proton Track Reconstruction

The numerous clusters created throughout the many layers of the calorimeter are gener-
ated by the traversing protons. It is necessary to reconstruct all the intermingling tracks
generated by the protons, in order to “connect the dots” and be able to calculate the end-
point of all incoming protons.* This task is made difficult by the many small atomic
Coulomb scatter events, curving each trajectory slightly along its path. As a result of

*This approach is necessary in a tracking calorimeter, where all the recorded hits due to a single proton
must be matched, and thus disentangled from tracks originating from different protons. This is in contrast
to scintillator-based energy detectors, where a single proton event is time-matched using a trigger system
to the corresponding tracker detector output.
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this, it is not possible to apply conventional tracking methods such as straight-line fitting
with a Kalman filter or Hough-based line-finding algorithms. Rather, a probability enve-
lope of the angular deflection must be calculated in the search for the next track sector.
In this section, the track reconstruction algorithm developed for this project is described.

4.4.1 Track Reconstruction Algorithms

A track-finding algorithm has been developed, modeled after the track following proce-
dure in Strandlie and Frühwirth (2010):

i) Cluster pairs at approximately the same lateral position in the two first layers are
identified. Multiple cluster pairs may originate from the same cluster in the first
layer, to allow for tracks having different initial directional vectors. In Fig. 4.15
this process is visualized.

ii) Using the position and direction of each cluster pair as the starting point of a grow-
ing track candidate, further clusters are searched for at extrapolated anticipated po-
sitions in the subsequent layers.

iii) The expected RMS value of the multiple Coulomb scattering (MCS) angle distri-
bution, θ0, is found for each layer from the Highland equation (Eq. (1.6)).

iv) At each sensor layer, a search cone is applied in order to identify all possiblematches.
The radius of the search cone is calculated as the k · θ0 value. The value k is used
as a scaling factor.

v) Within this search cone, the cluster that is most adjacent to the anticipated position
is added to the growing track. The angular deflection of the cluster is calculated as

∆θ = cos−1

[
T⃗i−1 · T⃗i

|T⃗i−1||T⃗i|

]
, (4.11)

where the vectors are defined in Fig. 4.15.

vi) All candidate tracks originating from the same seed cluster in the first layer are
compared, by searching for the highest scoring track. The track score is calculated
as a function of the track length, the amount of angular scattering between each
layer, and a check of whether the track contains a Bragg peak or not.

vii) The tracking algorithm is run twice, first with k = 2.5 and then with k = 5, so that,
first, the relatively straight and most abundant ∆θ < 2.5 θ0 tracks are found, and
then one more time to ensure that all tracks with 2.5 θ0 < ∆θ < 5 θ0 are found.

It turns out that a number of tracks are still incorrectly reconstructed by comparison with
MC simulations, which is assumed to be the ground truth.
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𝚫𝜽𝟏
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Figure 4.15: A schematic example of the track reconstruction process, with hits from two
proton tracks shown. Two track segments, T⃗0 and T⃗1, has been identified. The dashed
line is the extrapolation of T⃗1. In the continuation of the track, two possibilities (T⃗2,0 and
T⃗2,1) are available within the search cone (shown in yellow). The angular deflections∆θi

are calculated. Since ∆θ0 < ∆θ1, then T⃗2,1 is chosen as the next track segment.

4.4.2 Track Reconstruction Quality

Some track optimization methods are performed, in order to increase the accuracy of the
proton track reconstruction. Due to the physics of proton interactions, a portion of the
protons will stop abruptly due to nuclear interactions, prior to entering their Bragg peak
region, in which the bulk of the protons come to rest. Such tracks do not contain a Bragg
peak, and thus do not have an increased energy deposition in the deepest layer.

A cut based on the Edep value of the cluster in the deepest layer of each reconstructed
proton track ensures that the majority of such tracks are identified and removed from the
analysis. The Edep threshold should be around 2.5 keV/µm. This value has been found
by recording two Edep distributions:* one for protons stopping due to ionization energy
losses and one for protons undergoing nuclear interactions, scored in the last reached
sensor layer: see Fig. 4.16. A Landau distribution is fitted to each of the distributions
using the ROOT library TMinuit. The Edep value where the distributions are equal is
defined to be the threshold value, and should give the best probability of correct clas-
sification. The Most Probable Value (MPV) of the energy loss of the nuclear interacting
protons is 0.66 keV/µm, and the MPV of the gradually stopping protons is 4.21 keV/µm.
The threshold value between the two is shown as the dashed line at 2.52 keV/µm.

*Determined using a GATE simulation of 20 000 protons with an initial energy of 230 MeV and track-
ing their histories throughout the detector setup.
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Tracks that leave the detector laterally, and thus for this reason do not contain a Bragg
peak, are also removed from the analysis by identifying outwards-pointing tracks that end
near a detector side.

As presented in Section 3.1.1, some of the sensor chips were not able to transfer all
of the hits to the DAQ system. In addition, there is a 100 µm dead area between the two
chips in a module. The track reconstruction software needs to be able to handle missing
clusters due to dead chips, bad data channels and gap areas. If the reconstruction algo-
rithm cannot find a cluster to append to the growing track, it extrapolates the track one
layer further, based upon the track position in the last layer with an identified cluster.
If there is a cluster close to the extrapolated position in this next layer, the track con-
tinues from there. In this way, tracks that are lacking a cluster in a single layer are still
reconstructed. The survival rate of the protons is still lower in the experimental dataset
compared to the MC results: Areas with fewer reconstructed tracks near the projected
position of the bad chips can be observed in Fig. 3.5.

Due to charge diffusion, separate hits with a shower of diffused charge surrounding
themmay be identified as a single cluster that is merged and kept as a single cluster. Two
crossing protons can produce a single merged cluster with the result that only one of the
reconstructed tracks may be incorporated in it, resulting in a track with a missing cluster
in the layer where the protons crossed. Therefore, a cluster splitting algorithm is applied:
The algorithm locates all the crossing track pairs in the layer where one of the tracks is
missing a cluster. It then divides the supposedly merged cluster into two, and connects
the new cluster to the track without a cluster. Each of the new clusters has a smaller size
than that of the merged cluster: The size is chosen according to Eq. (4.8) such that the
total amount of deposited energy is conserved.

4.4.3 Track Loss

Loss of tracks may occur due to protons leaving the detector geometry, due to dead sensor
areas and tracks may cease due to inelastic nuclear interactions in the detector. Tracks
that are incorrectly reconstructed due to mismatch errors will be discussed in Section 4.5.

The overall percentage of track loss from all recorded beam energies is 40%. These
tracks are cut from the analysis, examples of this are tracks identified as undergoing an
inelastic nuclear interaction, these have been subtracted since they do not contribute to
the range calculation, likewise also for tracks ending outside the detector or in a dead
sensor area.
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Figure 4.16: Energy loss distributions of protons stopping due to ionization energy loss
and due to nuclear interactions, respectively, each fitted with a Landau curve. The dotted
line shows the Edep where the contributions from the two processes are equal, and it is
used for discrimination between the two.

Track Loss due to Nuclear Interactions

A fraction of the tracks end before their expected range, this is mainly due to nuclear in-
teractions. About 33% of the tracks stop prior to their mean projected range (accounting
here also for the range straggling), in addition to those having a cluster size distribution
with no identifiable Bragg peak. These results are higher than the fraction of protons
undergoing nuclear interactions obtained from Janni (1982) and from MC simulations,
where the values across the energy range is found to be about 19%. The discrepancy
may arise from tracks that resemble inelastic scattering, but are instead incorrectly re-
constructed tracks from protons undergoing other processes or tracks from secondary
particles.

Track Loss due to Dead Sensor Areas

If a slowing-down track is found to stop in a dead sensor area, it is discarded. The fraction
of tracks discarded in this manner is 5% across the detector area and the beam energies.
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Track Loss due to Protons Leaving the Detector

Some of the protons leave one of the lateral detector sides. This is either due to multiple
scattering processes or due to the proton’s initial direction when entering the front face
of the detector. Protons leaving the detector before coming to rest are removed from the
analysis. This effect is proportional to the proton range, and in average 4% of the protons
exit from the detector this way.

4.5 Proton Intensity Capacity

During the beam test, the intensity of the beam was adjusted ensuring that the rate of pro-
tons was a little below the readout frequency of the calorimeter, so that at maximum one
proton was contained in each readout. Due to the high granularity of the MIMOSA23
sensors, it is possible to reconstruct a large number of proton tracks concurrently. Con-
sidering this, np readout frames have been accumulated in the track reconstruction step.

The detector occupancy is the ratio of the number of activated pixels to the total
number of pixels in the detector. The detector occupancy increases linearly with np,
and at np = 500 the detector occupancy is 0.42% in the last active layer, containing the
largest fraction of protons with a Bragg peak. This corresponds to 13.5 activated pixels
per proton track in that layer.

A higher detector occupancy decreases the probability that all hits in a given recon-
structed track originates from the same primary proton. The number of correctly recon-
structed tracks has been found through checks against the primary proton identification
ID tag obtained from MC simulations, which indicates the primary proton responsible
for the cluster. The saturation limit of the detector, np, max, is calculated according to the
accuracy goal of the proton tracking. Fig. 4.17 shows the portion of tracks which are
identified as correctly reconstructed, i.e. they originate from the same primary particle,
at different np values. Three curves are shown according to different definitions of a
correctly reconstructed track. Tracks lost due to the effects described in Section 4.4.3
are not included in this figure.

The resulting saturation limit where 80% of the tracks are correctly reconstructed is
np,max = 235, resulting in a proton intensity capacity corresponding to 470 000 protons/s.
However, themisidentification of a track introduces errors that are potentially small, such
as a small shift in the angular orientation and in the lateral position determination. With
an allowance of small deviations of ±0.5° and ±0.5mm on the misidentified track in the
first layer, the resulting saturation limit at 80% accuracy is np,max = 480, corresponding
to 960 000 protons/s, or 60 000 protons/cm2/s. This number has been found with MC
simulations where the beam is uniformly spread across the complete detector area. This
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Figure 4.17: The fraction of correctly reconstructed tracks, benchmarked using MC
simulations. Three curves are shown according to different definitions of a correct track
reconstructed. From Pettersen et al. (2017).

may not be true for all applications, such as during pencil beam scanning. The results in
Figs. 4.21 and 4.23 aswell as the resulting range uncertainties are obtainedwith np = 500.

4.6 Range Calculation

There are several components in the range calculation workflow of the DTC, as shown in
Fig. 4.18 and in Fig. 4.19. First, the expected range R at a given initial energy E0 needs
to be calculated: this is found using fully scored GATE simulations, retrieved using the
spline interpolated look up tables.

Using information about the energy-range relationship obtained from the simulations,
a model of the Bragg curve is fitted to the calculated depth-dependent energy loss. In
this way, the individual range R̂ for each tracked proton is estimated. This process is
explained in Section 4.6.2.

The mean value ⟨R̂⟩ of the distribution of all the individual ranges can be compared
to the “MC truth” R. At this step, some care must be taken to extract a “mean” value
from the distribution, as the layered geometry does not produce a simple Gaussian range
distribution. This process is discussed in Section 4.6.3.

Then we are able to find the accuracy of the calorimeter (and of the analysis proce-
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+ reconstructed tracks

Figure 4.18: Workflow of the range calculation procedure.

dure), and this is here defined as the average deviation ⟨⟨R̂⟩ −R⟩. The range uncertainty
is the total width of the calculated range distribution, ⟨σ̂R⟩, and can be compared to the
compared to the “true” range straggling in the simulated data σR.

4.6.1 The Expected Proton Range

In order to identify the relationship between initial proton energies and the corresponding
range of the protons in the calorimeter, LUTs have been generated for theMC simulations
of the beamline experiments and for the design optimization of Chapter 5. The most
accurate range calculation scheme is the one where pre-calculated values are stored in a
spline-based LUT (Section 2.2). Each time a conversion needs to be performed between
the initial energy and the range of the proton, or between the range and the WET (via the
initial energy), the spline is evaluated at that point.

These LUTs are generated using output data files from MC simulations where all
interactions are stored (example in Fig. 4.2), this approach is in contrast to only storing
interactions in the sensor chips. In this manner, the “MC truth” range R is found as the
mean value of the range distribution of all simulated proton histories. By modulating the
initial proton energy in steps of 1 MeV in the range of initial energies that was used in
the experimental beam test, an accurate LUT connecting the initial proton energies and
final proton ranges is created.

A look-up-table for proton ranges in pure water is also created in order to calculate
the WET of a given proton in the DTC: This is done by calculating the energy from the
proton range, and then calculate the WET from the energy. Note that this procedure is
more accurate compared to using a constant stopping power ratio between water and the
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Figure 4.19: Components of the range calculation procedure. Left: The “MC truth”
range distribution from GATE simulations (the visible artifacts are due to the fact that
few protons stop in the air gap layer). Right: The energy-loss plot from a single proton,
used to find the proton’s range. Bottom: The resulting distribution of all individual
proton ranges, to be compared to the “MC truth” range distribution. The data is from
MC simulations of a geometry defined in Chapter 5, where the energy absorber is a 4mm
aluminum layer.
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detector materials, since the stopping power ratio is only approximately energy indepen-
dent.

Error Estimation of the Range due to the Absorber Thickness

The error in the range measurements is dominated by the large sampling spacing be-
tween the sensor layers. Assuming uniform hit distributions throughout each layer, a
first estimation of the error can be calculated as ∆z/

√
12 = 3.975mm/

√
12 = 1.15mm,

corresponding to 9.2mmWET. This error is visualized as the horizontal error bars in
Fig. 4.20. While this error is not propagated further in the analysis, it should be com-
pared to the error in the reconstructed range ⟨σ̂R⟩ as defined in Section 4.6.3.

4.6.2 Range Calculation of Individual Protons by Bragg Curve Fit-
ting

Each track is constructed from a connected collection of clusters; there is maximum one
cluster in each layer for each proton track. The cluster sizes are converted into estimated
deposited energy using the method described in Section 4.3. By fitting a Bragg curve to
the deposited energy in each layer, the estimated proton range, R̂, of a single proton track
can be calculated with an improved accuracy compared to that of using the last traversed
sensor layer in the track as representing the range of that proton (see the discussion in
Section 6.5 for more details). While the spline-based method from Section 2.2 is very
accurate when used for the calculation of the range based upon information about the
initial energy of the proton, a simpler function such as the differentiated Bragg-Kleeman
rule (Bortfeld, 1997) has a smoother behavior around the Bragg peak and is as such more
suitable for approximating the energy loss curve:

DBP(z) = −1

ρ

dE
dz =

1

ρpα1/p(R̂− z)1−1/p
(4.12)

Here, z is the traversed depth and R̂ is the range estimate that best describes the data
during the fitting procedure. Furthermore, ρ = 17.7 g cm−3 is the average density of
the DTC, and the parameters p and α are found in a similar fashion to those described
in Section 4.6.1: by fits to MC simulated ranges in the energy range between 150 and
250 MeV one obtains the values α = 0.0446 cm/MeV and p = 1.668 in the geometry.
Eq. (4.12) exhibits errors at large (R̂ − z) values due to the underlying simplifications.
However, the estimation is quite accurate near the Bragg peak where z → R̂.

It should be noted that the range estimation takes into account the energy loss of
the incident protons in the scintillators providing trigger signal (see Section 4.1.1). The
number of traversed scintillators is estimated from an extrapolation of the initial proton
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position*, and a pre-sensor energy loss was estimated and added to the energy of each
proton crossing these scintillators.

4.6.3 Estimating the Range from Multiple Proton Tracks

By performing the range fitting procedure as described in Section 4.6.2, an estimate of
the range R̂ is obtained for each reconstructed proton track. The validity of this estimate
depends to a large degree on the position of the Bragg peak relative to the position of
the sensor layer where the proton comes to rest. In a longitudinally segmented detector
setup, depending onwhether the energy of the protons is such that the Bragg peak depth is
located within one sensor layer, or as also will happen, if the Bragg peak depth is located
between two sensor layers, results with different levels of uncertainties are obtained. If
the Bragg peak is located within a sensor layer, the resulting distribution of reconstructed
ranges is normally distributedwith a central value at the sensor layer depth. By increasing
the beam energy slightly, the distal deepest reaching end of the R̂ distribution reaches into
the next, deeper, sensor layer. In this latter case, two separate distribution appear, each
representing the central position of the two sensor layers most adjacent to the center value
of the physical Bragg peak.

A Gaussian fit is performed around the depth of each sensor layer in order to identify
the distributions of the R̂ values. The histogram has bins xi with widths 2.5 mm and
weights wi. Each fit is evaluated based on the sum n of the bin values in the µ ± 3σ

region, as well as its χ2/n value. Fits that are positioned in areas with high noise or low
statistics are rejected: the cut criteria have been chosen as n < 0.2N and χ2/n > 8. Here,
N is the total number of entries in the histogram.

The resultingGaussian distributions are determined by (µ1, σ1) and potentially (µ2, σ2)

if a second distribution is found, where µ1 < µ2. This procedure is performed in order
to find the histogram bin with the lowest range value xi′ in the Bragg peak region. The
range value for the bin is defined relative to the first Gaussian, where xi′ ≡ µ1 − 3σ1.
This cut on the range will further ensure that the overall range estimate is based only on
proton tracks slowing down to low speed and stopping in the matter, thus generating a
Bragg peak.

The reconstructed range ⟨R̂⟩ is calculated as the weighted average from the histogram
bins. The corresponding range uncertainty ⟨σ̂R⟩ is the empirical standard deviation of the

*The initial proton vectors are assumed to be parallel. Any measurement of the initial angular devia-
tion, using information from the the first two sensor layers, is dominated by the scattering in the detector
materials.
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same histogram. These parameters are calculated by

⟨R̂⟩ =
∑∞

i=i′ wixi∑∞
i=i′ wi

, ⟨σ̂R⟩ =

√∑∞
i=i′ wi(xi − ⟨R̂⟩)2
[
∑∞

i=i′ wi]− 1
(4.13)

By calculating the standard deviation of the reconstructed range, without making any
assumptions of the shape of the distribution of the data or by performing any fits to the
data, the range uncertainty ⟨σ̂R⟩ for a given dataset can be estimated in a direct way,
avoiding the propagation of errors that are introduced when adding multiple Gaussian
distributions.

4.7 Accuracy andUncertainty of the RangeCalculations

After performing the range fitting as described in Section 4.6.2, estimates of the range
R̂ are obtained for each individual proton track. The Bragg curve fit to three individual
protons tracks are displayed in Fig. 4.20. In that figure, the displayed “±” accuracy
is the output from the least-square method applied on an individual proton, and it is
not representative for a proton beam of that energy. Some of the tracks are missing
measurements in some of the layers, this is due to bad readout channels.

The range uncertainty ⟨σ̂R⟩ is always larger than the inherent range straggling. This
lower limit of the accuracy can be estimated to be ⟨σ̂R⟩min = 0.017R0.935, in units ofWET.
This is the range straggling as it is observed in MC simulations where the full detector
volume has been scored. This value is slightly larger than the range straggling occurring
in pure water, which is approximately 0.012R0.935 (Bortfeld and Schlegel, 1996).

A summarizing figure with the range accuracy and range uncertainty results from
both the MC simulations and experimental data can be seen in Fig. 4.23.

4.7.1 Experimental Data

As described in Section 4.6.3, the range distribution from multiple proton events is ap-
proximately Gaussian distributed around each sensor layer. A Gaussian fit procedure
is applied in order to estimate the reconstructed range ⟨R̂⟩ of protons with different in-
dividual ranges R̂. The available range distributions for the experimental datasets of
different energies are shown in Fig. 4.21. Note the short ranges due to identified nuclear
interaction processes: these are removed from the analysis. A comparison between the
experimental data and MC simulations at 188 MeV is also shown in Fig. 4.22. A table
showing the different results can be found in Table 4.3.

The expected range straggling is 2.6–2.8mmWET, found from the proton range in
the detector and the initial energy spread of the beam in accordance to Eq. (1.12).
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Figure 4.20: Bragg curve fit (solid line) to individual proton tracks from the experimental
data. The data points display the proton’s depth and energy loss in each traversed layer.
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The range uncertainty and range accuracy (systematic error) depends on whether one
or more sensor layers are covered by the range straggling distribution.* The measured
range uncertainty is on average 6.8mmWET (4.4%) with one sensor layer included (120
MeV, 160MeV and 180MeV), and 20.1mmWET (11%) with two or more sensor layers
included (139 MeV, 170 MeV and 188 MeV). The latter is perhaps more indicative of
the reality. Conversely, as expected, the range accuracy is low when one sensor layer is
covered, at ⟨⟨R̂⟩ − R⟩ = −13.4mmWET, and higher when two layers are covered, at
⟨⟨R̂⟩ −R⟩ = −4.7mmWET.

4.7.2 Monte Carlo Simulations

A set of MC simulations was performed with beam energies varying from 145 MeV to
200 MeV, increasing the beam energy in steps of 1 MeV. The reconstructed ranges ⟨R̂⟩
from each dataset are shown in Fig. 4.23.

For beam energies between 145 MeV and 200 MeV, the average estimation error
⟨σ̂R⟩ based on Eq. (4.13) is 9.4mmWET (4.6%), and the average absolute deviation
from the expected range ⟨⟨R̂⟩−R⟩ is −3.3mmWET (1.7%). The values for ⟨R̂⟩−R vary
from −7.9mmWET to 0.3mmWET due to an oscillatory behavior of the estimation (see
Fig. 4.23). The oscillatory pattern is thought to be due to the under-sampling of the Bragg
curve, with a spacing between the sensor layers of approximately 32mmWET: this will
be a consequence of protons depositing a significant part of their energy, forming a Bragg
peak in an absorption layer. In other words, in Fig. 4.23 it is observed that beam energies
resulting in a Bragg peak that covers two sensor layers are more accurate, with a dip in
the range accuracy when only one sensor layer is covered.

In the next chapter we will further explore this oscillatory pattern, together with the
limits for both the resolution accuracy and the range uncertainty when the large thickness
of the energy absorbers is reduced in a MC study.

4.8 Conclusions on the DTC Benchmarking

The materials used in the current version of the DTC are optimized for applications in a
high energy physics experiment. Due to this, every sensor layer is separated by tungsten
absorbers of 32mmWET. This sets an upper limit to the accuracy with which the range
and energy of protons can be determined in the present prototype.

The measured range uncertainty is 14mmWET (8.2%) on average, depending on
whether one or two sensor layers are covered by the beam. The obtained range uncer-

*At least 20% of the total entries must be located around a sensor layer for it to be included in the
calculation, to reduce noise from lower-energy tracks
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Figure 4.21: Range (R̂) distributions fromBragg curve fits. The dashed line indicates the
lowest-range bin used for the range estimation (see the text). The 32mmWET spacing
between the peaks correspond to the spacing between the sensor layers.
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Figure 4.22: Range estimation distributions from Bragg curve model fits — compari-
son between the MC simulations and the experimental beam at 188 MeV. Adapted from
Pettersen et al. (2017).

Figure 4.23: Reconstructed WET ranges of proton beams with different energies, with
data from both theMC simulations and from the experimental measurements. The PSTAR
(water) range is displayed using a band representing the expected range straggling.
From Pettersen et al. (2017).
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Beam energy [MeV] 120 160 180 139 170 188 151
Layers covered 1 1 1 2 2 2 3

Nominal range R [mm] 105.9 175.7 215.9 137.5 195.7 232.7 158.8
Reconstructed range ⟨R̂⟩ [mm] 97.0 164.0 196.2 132.2 188.5 231.1 137.8
Range error ⟨⟨R̂⟩ − R⟩ [mm] -8.9 -11.7 -19.6 -5.2 -7.2 -1.6 -21.0
Rel. range error [%] -8.4 -6.7 -9.1 -3.9 -3.7 -0.7 -13.2

Nom. range straggling σR [mm] 2.6 2.8 2.8 2.6 2.8 2.8 2.7
Range uncertainty ⟨σ̂R⟩ [mm] 6.5 6.3 7.5 19.1 16.3 25.1 17.4
Rel. range uncertainty [%] 6.1 3.6 3.5 13.9 8.3 10.8 11.0

Table 4.3: Range accuracy and uncertainty of the experimental data. Ranges and range
accuracies are given inWET. The nominal range straggling is calculated from the energy
straggling of the proton beam added to the expected range straggling from the detector.
The “Layers covered” number reflects how many sensor layers that are covered by the
range straggling distribution (see Fig. 4.21), the table is sorted by this value.

tainty varies with different incident energies, from around 6.3mmWET from the 160
MeV beam test to 25mmWET from the 188 MeV beam test.

The results of this work indicate that the DTC can be used for track reconstruction
and range estimation for a significant number of concurrent proton tracks at therapeutic
energies. The proof-of-concept tracking calorimeter shows that a next version with a
more optimized prototype has the potential of enabling fast and accurate determination
of the ranges of individual protons in a therapeutic proton beam.

The intensity capacity of a uniformly distributed beam was found to be in the order
of 106 protons/s, or 60 000 protons/s/cm2. The number depends on the performance of
the tracking algorithm and the spatial distribution of the proton beam. An improved
algorithm would increase the accuracy of the track reconstruction, and would enable for
separation of a higher number of protons in each readout frame.

The intensity capacity presented in this work is at the high end of the capacities of ex-
isting prototypes, where the current fastest proton CT systems are able to handle 2× 106

protons/s (Johnson et al., 2016; Uzunyan et al., 2013a), and DeJongh (2017) aiming for
a readout speed of 107 protons/s.
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Chapter 5

Design Study of the Digital Tracking
Calorimeter

In this work, the performed data analysis have been based upon a experimental results
from a prototype of the Digital Tracking Calorimeter (DTC) made for the ALICE-FoCal
experiment. This work has been performed as a proof-of-concept for the DTC.

In this chapter, we will apply the experience from this first prototype in order to
propose a design for the next prototype of the DTC. As the next prototype of the DTC
will follow similar design principles as the ALICE-FoCal prototype: large-area arrays
of pixel sensor layers are to be stacked in the longitudinal direction of the detector, the
layers being interleaved with energy absorbing layers.

The aim for the design study to be outlined here is to optimize the various proper-
ties of a DTC for its use as an integral part of a detector for proton CT purposes. The
simultaneous optimization is performed of the following metrics: high accuracy of the
range determination; low uncertainty (a low standard deviation) in the range determi-
nation, this is limited by the proton beam’s range straggling; high track reconstruction
efficiency, i.e. the ability to disentangle and reconstruct all the protons in a single read-
out frame; and other constraints such as economy (the number of layers), cooling and
mechanical stability.

The range accuracy will have impact on to which degree the Relative Stopping Power
(RSP) map for the patient’s body is correctly identified, while a high range certainty and
an efficient track reconstruction enables that fewer protons are needed during the scan,
i.e. a lower dose to the patient and a shorter scan time and a higher signal to noise ratio.

The design optimization is here performed through the determination of an optimized
thickness of the energy absorber material between the sensor layers, as well as the choice
of the absorber material itself. We are considering several different values for the thick-
ness and will carry out the analysis as presented in the former chapters on Monte Carlo
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(MC) simulated data.

5.1 The ALPIDE Sensor Chip

One of the design choices that was made early in the planning phase of the next proto-
type of this detector, was that of the sensor chip type: the chip ALPIDE (ALICE Pixel
Detector) (Mager, 2016) is to be used. This choice reflects that the planned upgrade of
the ALICE Inner Tracking System (ITS), is based on the ALPIDE chip which has been
developed for that specific purpose.

This ongoing development process for the ALICE experiment simplifies many of the
tasks also for the next DTC prototype development: chip wafer production, mechanical
and electrical integration of the chips as well as the design of the readout electronics,
software and chip testing regimes.

The ALPIDE chip can be compared to the MIMOSA23 chips used in the first DTC
prototype: It is a Monolithic Active Pixel Sensor with digital threshold readout, it has ap-
proximately the same chip dimensions (3× 1.5 cm2) and pixel dimensions (28× 28 µm2).
However, in many respects, it is a significant upgrade with favorable properties for pro-
ton CT usage: A fast integration time of 5 µs with a readout chain capable of handling
a continuous readout at that rate is achieved by the reduction of data, through: the re-
gional pixel readout via a priority encoder, a multi-event memory and a so-called zero-
suppression technique, where only activated pixels send a signal. The integration time
of 5 µs can be compared to the readout capabilities of the MIMOSA23 chip, where the
integration time for continuous readout was set to be 642 µs.

In Fig. 5.1, a prototype of the ALPIDE chip can be seen mounted to a carrier board. In
a proposed setup, using design elements from the ITS Inner Barrel project, nine ALPIDE
chips are mounted horizontally to a single carrier board. Several such carrier boards can
then be stacked vertically, enabling a detector area of 27× (n× 1.5 cm2).

The design constraints from the the planning work discussed above is used for the
MC optimization in this chapter. However, as the details are preliminary they might not
reflect the final DTC to be constructed. More details on the ALPIDE chip can be found
in Mager (2016), and in the MSc thesis of Grøttvik (2017) where a proton CT readout
system using the ALPIDE chip is explored.

5.2 Design Guidelines of the Next DTC Prototype

By considering several different values for the spacing and carrying out the analysis as
described in Chapter 4, potential geometries are explored through through MC simula-
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Figure 5.1: The ALPIDE chip, mounted to a carrier board (right), here protected by a
glass disc, and the adapter slave connection to the DAQ. From ALICE-ITS / Grøttvik
(2017).

tions with respect to the of the range accuracy (systematic bias of range determination),
range uncertainty (in addition to the inherent range straggling), tracking efficiency as
well as economy: driven by the number of layers and the number of chips per layer
needed.

Several geometrical configurations are needed in order to compare and evaluate the
desired detector metrics. It is possible to define a large number of potential designs for
the DTC, and therefore some constraints must be put on the degrees of freedom in this
work. A baseline design based on the original ALICE-FoCal prototype from Chapter 3
is shown in Fig. 5.2. While the geometry of the sensor chips and electronic components
are unaltered, the energy absorbers between the sensor layers are chosen to be between
2 mm and 6 mm aluminum (the choice of aluminum is discussed below).

In order to achieve a high accuracy in the measurement of the initial proton vectors,
the two first layers should contain as little mass as possible. To this end, the first absorber
layer is removed and the cavity is filled with air.

Details such as chip bonding, aspects related to the mechanical structure, heat sink
design and the readout electronics are out of scope of this work and, also, not yet finally
decided upon. As a result of this, the exact results of the simulations will not reflect
the detailed final prototype. Several simplifications are made during the geometrical
designs for the MC simulations, such as using homogeneous slabs of materials rather
than implementing accurate designs with details such as the ALPIDE chips bonded to
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Figure 5.2: The design to be optimized: Different thicknesses (2–6mm) for the energy
absorbers are considered, and evaluated through the MC simulations. Only the “active”
sensor volumes are scored in the MC simulations.

the PCB, glued to a backing together with absorbers and heat sinks, all mounted to a
scaffolding. Nevertheless, the longitudinal distribution of materials will be modeled and
included to the level of available knowledge.

Different materials are available for application as the absorber material. Material
properties such as proton stopping- and scattering power, durability, ease of machin-
ing and mounting, thermal conductivity, thermal expansion of the absorber material and
secondary neutron production must be considered, as well as the interface between the
absorber and the aluminum carrier board for the sensor chips (e.g. having similar ther-
mal expansion coefficients). See Table 5.1 for a list of different properties: the WET is
found by finding the thickness which yields the same stopping power as 4 mm water.
The scattering angle is calculated with the Highland equation (Eq. (1.7)) for a 150 MeV
proton through a 4mmWET slab. The neutron yield is the number of neutrons produced
per incoming proton, and is accurate to 6% from Poisson statistics (150 MeV beam in a
slab of 4mmWET, found in the GATE simulations by using the QGSP_BIC_HP* physics
list and 105 primaries).

Based on these, and in particular that the flexible PCB cables connected to theALPIDE
sensors are mounted to an aluminum backing, the material of choice for the absorber is
aluminum. The MC simulations that are reported on here focus on aluminum as the ab-
sorber material, however MC simulations using graphite as the absorber material were
also conducted. They did not yield any substantial differences in terms of track recon-
struction quality and range resolution, and are therefore not reported upon.

*HP: High Precision Neutron calculations down to thermal energies.
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Material PMMA Graphite Aluminum Copper Tungsten
4mmWET equivalent [mm] 3.46 2.24 1.9 0.66 0.4
Scattering angle [mrad] 3.25 4.7 6.0 9.2 15.3
Neutron yield [10−4] 69.2 71.9 80.9 74.1 26.9
Thermal conductivity [W/mK] 0.25 25–240 205 401 174
Thermal Expansion [10−6 K−1] 70 4–8 21–24 16 4.5

Table 5.1: Properties of the potential absorber materials (Particle Data Group, 2015;
Touloukian et al., 1971; Goodfellow Inc., 2018).

5.3 Monte Carlo Simulations of Different Geometries

To perform the data analysis to the level required to calculate the desired performance
metrics, the MC simulations must contain the following: A proton beam with realistic
spatial and (adjustable) spectral characteristics, and an sufficiently accurate geometri-
cal implementation of a stack of ALPIDE chips fixed to absorber layers of adjustable
thicknesses.

A water phantom of variable thickness is used to modulate the a monoenergetic beam
to different energies. The stochastic energy loss throughout the beam ensures that the
resulting energy and spatial distribution incident on the detector is realistic.

The overall design of the setup is similar to the one described in Section 4.6.1: The
beam is placed in front of the water phantom, uniformly distributed from a plane, with
an area of 100 cm2, parallel to the sensor area.

The MC software GATE version 7.2 has been applied, together with the physics
builder list QGSP_BIC_EMY, using default settings for step length and particle threshold
(Grevillot et al., 2010). The mean ionization potential for water is set to 75 eV in order
to facilitate comparisons with the PSTAR database (Berger et al., 2005).

The “GATE Geometry Builder” software tool developed for this project was de-
scribed in Section 4.2.3 and it is used here for the purpose of generating DTC geome-
tries with different absorber thicknesses. The purpose is dual: First to rapidly generate
different geometries without manually calculating and propagating all the necessary ge-
ometrical parameters, and secondly to ensure that the geometries do not contain errors
from the input or manual calculations.

When the GATE software has been configured for a single geometry, a number of
scenarios are defined by generatingMC simulations of proton beamswith realistic energy
spectra and a fine stepwise variation of the initial energy in order to characterize the
linearity of the range determination accuracy.
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5.4 Analysis Workflow

In order to obtain the best possible estimates of the performance of the different DTC
designs, the different parts of the analysis are treated separately: The track reconstruction
step is omitted during the evaluation of the residual range calculation, where the tracks
are obtained directly from the “MC truth” using the primary proton identification ID from
GATE.

Using a perfect track reconstruction, the Bragg curve fittingmethodology as described
in the last chapter is applied to find the reconstructed range R̂. The mean range ⟨R̂⟩
and the corresponding range uncertainty ⟨σ̂R⟩ are found for each beam energy using a
modified version of the method described in the last chapter. These results from the
different geometries under study are compared.

Then, a modified version of the tracking algorithm from the last chapter, optimized for
a denser layer geometry, is applied on the data. Here, the track reconstruction efficiencies
from the different geometries are compared.

5.4.1 Proton Range from “MC Truth”

The final results from the range calculations that emerge from the following sections
need to be compared to a ground truth, and separate MC simulations are made for this
purpose.

The methodology for comparing the calculated proton range to the “MC truth” is
similar to the one described in Section 4.6, however a energy degrading water phantom
is modeled in order to obtain a better estimate of the energy spectra. A short summary is
given below:

A mono-energetic 250 MeV beam is modulated to represent realistic energy spectra
with residual proton ranges that span the complete DTC in depth. The water phantom
thicknesses vary from 0 cm to the maximum water equivalent range of the beam, ap-
proximately 38 cm, in steps of 1 mm. The beam is uniformly distributed from a plane
source, with an area of 100 cm2, parallel to the sensor area. In Fig. 5.3 the simulated
setup is shown. A look-up-table containing phantom thicknesses, proton energy inci-
dent on DTC and residual DTC range is created, by using the geometrical input files as
described above and recording the interactions in all volumes. This is repeated for all
design variants and water phantom thicknesses.
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Phantom 
Proton 

beam line 

Sensor layers + energy absorbers 

with variable thickness 

Water phantom to modulate 

protons to lower energies 

Figure 5.3: Schematic setup of the range calculation geometry. In order to obtain a
spectrum of different proton beams to hit the DTC, the thickness of the energy degrading
water phantom is modulated from 0 cm to the maximum range of a 250MeV beam, which
corresponds to a water phantom length of approximately 38 cm.

5.4.2 Range Accuracy and Range Uncertainty

The range accuracy and range uncertainty resulting from a specific design variant can be
found by comparing the nominal proton range distribution R to the reconstructed proton
range distribution ⟨R̂⟩. See Fig. 4.18 for an comparison between the two. The range
accuracy, or ⟨⟨R̂⟩ − R⟩, is found by comparing the systematic error of the mean value
of the range distribution throughout the full dynamic range of the detector (in terms
of proton range). The range uncertainty is found by comparing the widths of the two
distributions, respectively, σR and ⟨σ̂R⟩. Any added width in the reconstructed range
distribution is due to the degrading effects of the detector and to the analysis routine.

Since the range uncertainty due to range straggling is known from theory (Eq. (1.11))
and from the MC simulations, the intrinsic range uncertainty from the analysis can be
calculated by subtracting in quadrature the expected range straggling from the measured
range uncertainty.

It is not expected that the uncertainty and accuracy for a given geometry are the same
at different incident proton energies, as the values are dependent on the relative posi-
tion between the proton range position versus the sensor layer position: This effect was
clearly seen in the ALICE-FoCal prototype, as described in Chapter 4.

It is also of interest to calculate other system properties: The fluctuation of the range
accuracy relative to the proton range relative to the sensor layer depth, and the effect on
the proton trajectory estimation error of the scattering in the first layer material.

5.4.3 Track Reconstruction

One of the strengths of the DTC design is the ability to disentangle and reconstruct a large
number of concurrent traversing proton tracks. To this end, a track reconstructionmethod
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Figure 5.4: Proton track angular change at different layers, using a 3 mm aluminum
geometry with a 250 MeV beam modulated by a 1 cm water phantom. The solid line is
the fitted “3σ” value of the distribution at each layer.

was developed, as described in Chapter 4 for the ALICE-FoCal prototype geometry.
The methodology needs some adjustments in order to be efficient for the thin-absorber
geometries:

To find values for the search radius (defined in Chapter 4) that better represent the ac-
tual scattering power, an empirical approach was chosen: For each DTC design (and for
each incident energy), a large number of “MC truth” tracks are found using the primary
proton identification ID from GATE. Then, for each layer, the scattering distribution is
found, e.g. a distribution of angular deviations. The “3σ” value of a fitted Gaussian dis-
tribution is used for choosing the search radius in a given scenario. See Fig. 5.4 for a
distribution of angular change values in a geometry with 3 mm aluminum absorbers. The
angular changes are smaller in the second layer, since it is a “tracking” layer without the
aluminum absorbers.

If the individual incident proton energy is unknown (as often is the case with exper-
imental data), an alternative approach is to choose a constant scattering angle threshold
based on the distributions — the value of ki · 50 mrad is chosen for this purpose. The
track-following scheme is performed two consecutive times using different values for
ki: k1 = 2 and k2 = 3. Due to the fact that the protons are subject to a higher scattering
power towards the Bragg peak, the track reconstruction is performed two more times
starting at the last identified hit towards the Bragg peak: This time the values k3 = 5 and
k4 = 7 are chosen as to include proton paths with a high degree of scattering.
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The Correctly Reconstructed Track

In order to benchmark the precision and efficiency of the track reconstruction algorithm
as described above, a definition of a correctly reconstructed track must be made. The
constraints are defined as: the first and last entry in a track must originate from the same
proton history, and the last hit from a proton history must be included. By following this
definition, track objects have the correct incoming vector and the correct residual range,
which is the required values for volumetric reconstruction of the stopping power map for
proton CT purposes.

The efficiency of the track reconstruction is defined to be the ratio of correctly recon-
structed tracks to the total number of identified tracks. Tracks that are stopping due to
inelastic collisions should not degrade the efficiency; they can be identified due to a lack
of an increase in the deposited energy at the distal part of the track due from the Bragg
peak (see Section 4.4.2). The efficiency is found as a function of an increasing number
of protons that are reconstructed simultaneously.

5.4.4 Range Calculation

Least-square fits are performed using the Bragg curve on the track’s energy loss mea-
surements in each sensor layer to obtain R̂. Examples from the different geometries are
shown in Fig. 5.5. Note that the range found using thinner absorber designs yields a vis-
ibly higher range determination accuracy of individual proton tracks. The mean value
and the standard deviation are calculated from the resulting range distributions, shown
in Fig. 5.6. The ranges of all protons in a beam (or a voxel, if used for image recon-
struction) contribute to a histogram with bin values xi and bin heights wi. The lower and
upper limits, respectively, x1 and x2 for the range distribution is defined as the µ ∓ 4σ

values. Then, we have

⟨R̂⟩ =
∑x2

i=x1
wixi∑x2

i=x1
wi

, ⟨σ̂R⟩ =

√√√√∑x2

i=x1
wi(xi − ⟨R̂⟩)2[∑x2

i=x1
wi

]
− 1

(5.1)

The above procedure is similar to the analysis for the ALICE-FoCal prototype, described
in detail in Section 4.6, with the difference being the method of fitting the Gaussian
distributions to the histogram values. In the geometries described here, a higher number
of sensor layers are contained within a range distribution, and as such it is possible to fit
a single distribution to the distribution of R̂ values. The results of these calculations are
compared to the ground truth obtained from separate MC simulations.
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Figure 5.5: Individual 250 MeV proton tracks in three different geometries, degraded
by a 10 cm water phantom, overlaid with a Bragg curve fit. The displayed “±” accuracy
is the output from the least-squares method applied on an individual proton, and it is not
representative for a proton beam of that energy. MC data taken with a 250 MeV beam
degraded using a 10 cm water phantom.
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Figure 5.6: Distribution of the individual estimated ranges. From this distribution the
residual range ⟨R̂⟩ and range straggling ⟨σ̂R⟩ of a proton beam is calculated, shown in
the text box as “⟨R̂⟩ ± ⟨σ̂R⟩”. The characteristic pattern of the distribution, with regular
sudden rises, can be seen in the figure. Each rise in the distribution is in coincidence with
the beam reaching a new sensor layer. MC data taken with a 250 MeV monoenergetic
proton beam degraded using a 10 cm water phantom.
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Figure 5.7: The tracking efficiency of the different geometries. In order for a track to
be regarded as correctly reconstructed, it must have the correct stopping depth, and the
start- and endpoints must originate from the same incoming proton.

5.5 Optimization Results

5.5.1 Efficiency of the Track Reconstruction

The efficiency of the track reconstruction, as defined in Section 5.4.3, is shown in Fig. 5.7
for the different designs under consideration. For the 4 mm design, the efficiency is
90% at a beam intensity of 4 protons/cm2 per reconstruction frame, and 80% at a beam
intensity of 8 protons/cm2 per reconstruction frame. With a proton beam of that intensity,
covering the full detector area of approx. 400 cm2 and with a continuous readout of
5 µs, the proton reconstruction capabilities at 80% efficiency corresponds to 640 million
protons/s.

The efficiency numbers are obtained with a uniform particle density in the MC sim-
ulations. A clinical proton beam is usually Gaussian distributed, with σxy∼5mm before
entering the patient (Rescigno et al., 2015). In Fig. 5.8 the lateral profile of a beam with
the parameters σx = 4mm, σy = 2mm and an angular spread of ∼4mrad is shown, first
after exiting a 10 cm phantom in the first traversed DTC layer, and then after the last tra-
versed DTC layer. It is evident that it is in the beam core that most efforts must be put for
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Figure 5.8: Beam profiles in the DTC at two different positions. A 250 MeV pencil beam
is shown first after traversing 10 cm water, then after traversing 30 layers of the DTC.
The pencil beam is defined by the parameters σx = 4mm, σy = 2mm and an angular
spread of ∼4mrad. The red ellipse is the 2σ value of the original pencil beam profile.

an efficient efficient track reconstruction, since the track density and thus the difficulty
of correct reconstruction, is highest in that area. The 2σ area of the beam, proximal to
the energy degrading water phantom, is 1 cm2. The 2σ area of the beam incident on the
detector is 1.3 cm2 and in the layer containing the Bragg peak the 2σ beam profile area
is 4.5 cm2.

Of the results presented in this chapter, the track reconstruction efficiency is the one
that is most dependent on improvements of the algorithm. In Chapter 7, several improve-
ment strategies will be discussed, such as simultaneous layer-by-layer reconstruction,
back-to-front reconstruction and techniques based on graph theory and also on machine
learning. The optimization of the track reconstruction algorithm will ensure that the re-
construction can be performed at higher beam intensities at high efficiencies.

Lastly, in the analysis of the ALICE-FoCal prototype data, a small relaxation was
made for tracks that were not perfectly reconstructed, due to a mismatch with nearby
tracks within 0.5° and 0.5mm. No quantitative results for such tracks are presented
here.

5.5.2 Accuracy of the Range Calculation

The range accuracy is the systematic bias on the calculated proton range, found by from
the reconstructed ranges ⟨R̂⟩ and the nominal ranges R through the relation ⟨⟨R̂⟩ − R⟩
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Figure 5.9: The range determination accuracy shown as the deviation between the “MC
truth” range, and the reconstructed range ⟨R̂⟩. For visualization purposes, a calibration
constant has been added to all ranges within a given geometry: this constant is below 1
mm (below 2 mm for the 5 and 6 mm thicknesses).

for each of the incident proton energies. In Fig. 5.9 the range accuracy is shown for
increasing incident energies in different designs of the DTC. Some key aspects can be
seen in Fig. 5.9: The systematic errors are kept within 0.5mmWET throughout the DTC,
for the designs having a 5 mm aluminum absorber or less. Note that, for visualization
purposes, a calibration constant has been added to all ranges within a given geometry in
the figure: this constant is below 1 mm (below 2 mm for the 5 and 6 mm thicknesses).

Oscillating Error in the Range Accuracy

There is an oscillation artifact in the range accuracy. It is especially pronounced for
the designs with 4 mm and thicker absorbers, and in the 2 mm and 3 mm designs it is
negligible. The artifact is characterized by a sinusoidal shaped perturbation of the range
accuracy.

The origin of the artifact is that the range straggling distribution of a proton beam
spans several sensor layers (see Fig. 5.6). The range accuracy depends on the number
of sensor layers covered, and on the position of the mean value of the range distribution
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Figure 5.10: Measurements of the peak-to-peak amplitude of the oscillation artifact and
the normalized Fourier amplitude.

relative to the position of the adjacent sensor layers. The more sensor layers that are
covered by the range straggling distribution (e.g. thinner energy absorbers), the smaller
the oscillation artifact. This was also seen in the ALICE-FoCal geometry, where range
distributions that spanned two sensor layers had a significantly higher range accuracy
compared to range distributions that only spanned one sensor layer (for a discussion, see
Section 4.7).

A quantitative measurement of the effect can be performed through a spectral anal-
ysis of the range accuracy distributions shown in Fig. 5.9: see Appendix B for more
details. In general the amplitudes of the oscillation are kept to within 0.5mmWET if
the absorber is thinner than 4.5 mm aluminum, and below 0.2mmWET for the 3.5 mm
aluminum geometry: see Fig. 5.10 for the relationship between the absorber thickness
and the oscillation amplitude.

5.5.3 Uncertainty of the Range Calculation

The uncertainty of the range calculation is highly dependent on its lower physical limit,
which is the statistical range straggling of the proton beam. As can be seen in Fig. 5.11,
the range uncertainty ⟨σ̂R⟩ is dominated by the inherent range straggling, with an increase
in the uncertainty of high energy protons traversing a higher fraction of the DTCmaterial.
The range straggling shows an oscillating variation with a wavelength correlated with the
spacing of the sensor layers, similar to the effects described in the last section.

The dynamic range of the DTC, given by the region with uniform range uncertainty
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Figure 5.11: The measured range straggling ⟨σ̂R⟩, together with the actual straggling
and the baseline straggling in water. An oscillating systematic error occurs when using
thick absorbers, due to the large spacing between the measurements in subsequent layers.
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Figure 5.12: The range uncertainties of the proposed designs. Shown in the figure is the
total uncertainty (measured as the mean value of ⟨σ̂R⟩ in Fig. 5.11), the range straggling
from the MC truth as well as the added uncertainty which is the quadratic difference
between the two. See Table 5.2 for the number of required layers for the shown designs.

and uniform range accuracy, is approximately between 20mmWET and 350mmWET
in the detector, or in terms of energy, between 50 MeV and 240 MeV. See Table 5.2 for
the correspondence between the energies and the required number of layers.

Inherent and Total Range Uncertainty

The averagemeasured range straggling ⟨σ̂R⟩ ranges from 4.15mmWETmeasured in the
2 mm geometry, to 4.8mmWET measured in the 6 mm geometry. This is the expected
overall uncertainty of the whole system. However, we need to consider that only a small
portion of this number actually is due to the properties of the reconstruction process and
the simulation of the detector. The range straggling as predicted during fully scored
MC simulations, here denoted as σR,MC, ranges from 3.92mmWET measured in the 2
mm geometry to 3.8mmWET measured in the 6 mm geometry.* The added intrinsic
uncertainty of the reconstruction process and simulation of the detector can be calculated
as the subtraction between the two in quadrature:

σR,Intrinsic =
√
⟨σ̂R⟩2 − σ2

R,MC (5.2)

*The increased fraction of aluminum relative to the copper contents in the PCB reduces the straggling
in the thicker absorber geometries.
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Absorber thickness [mm] 2 2.5 3 3.5 4 4.5 5 5.5 6
Layers needed (230 MeV) 66.6 55.2 47.1 41.1 36.5 32.8 29.7 27.2 24.4
Layers needed (200 MeV) 52.8 43.8 37.4 32.6 29 26 23.6 21.6 20

Table 5.2: The number of layers needed to contain a 230 MeV and a 200 MeV beam,
respectively, in the different geometries, when a necessary extra margin corresponding
to a distance of three times the range straggling is added.

The values for the average intrinsic uncertainty are now 1.4mmWET in the 2 mm ge-
ometry, 2.15mmWET in the 4 mm geometry and 2.9mmWET in the 6 mm geometry.
These values are shown in Fig. 5.12.

5.5.4 Required Number of Sensor Layers

The number of layers required to contain the complete proton beam has been found for
the different designs studied here. A 230 MeV mono-energetic proton beam has been
applied in this part of the work. The necessary dynamic range is defined as the range
plus 3 times the range straggling (to accurately measure the tails of a 230 MeV beam):
This leads to the required number of layers, listed in Table 5.2. For each layer, the energy
is degraded from the sensor chips, flexible PCB board with glue as well as the aluminum
absorber (see Fig. 5.2, the latter varying in thickness.

5.5.5 Impact on the TrackingResolution In Patient due to Scattering

One of the required measurements during the proton CT image acquisition is that of the
direction of the incoming proton, by using measurements from the first two sensor layers.
Any material in the first two sensor layers (i.e. the sensor chips, PCB and carrier backing
material) will scatter the incoming protons. The scatter angle is here denoted as the RMS
angle θ0 found by the Highland equation (Eq. (1.7)). We need to estimate the resolution
degradation as a function of different carrier backing material thicknesses, in order to
define a maximum thickness for the design specification.

We assume that the scattering a single event taking place near the first sensor layer,
and that the first sensor layer is positioned 15 cm after the the patient. In Bopp et al.
(2014), the distance between the patient and the first sensor layer is 10 cm, however we
increase this number somewhat in order to spread the beam for tracking purposes.

Moreover, we simplify the geometry, so that the PCB consists of 40 µm aluminum
and 60 µm silicon (aluminum-based flexible PCB) and that the ALPIDE chip layer is 10
µm aluminum and 40 µm silicon. The carrier board backing, which can be of different
thicknesses, is added to this. The degraded resolution due to scattering in the first two
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Figure 5.13: The proton position determination error on phantom due to scattering on
aluminum carrier board between the first two sensor layers. Left: Schematics of the
calculation. Right: Errors from different carrier board thicknesses (and contributions
from sensor chips and PCB).

sensor layers is most precisely calculated by performing a full Most Likely Path study,
however it can also be estimated by using the proxy variable “RMS lateral deflection of
proton vector on phantom”.

This lateral deflection should be kept as low as possible, and below 0.5mm. The value
is found by projecting θ0 onto the phantom 15 cm away. In Fig. 5.13 the positional errors
are shown as a function of the thickness of aluminum after the sensor layer, a number
which includes the contributions from the sensor chip and flexible PCB components.

The amount of aluminum added as a structural backing to the sensor chip and flexible
PCB between between the two first tracking layers should be kept below 450 µm.
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Chapter 6

Results and Discussion

6.1 The Digital Tracking Calorimeter Applied for Pro-
ton CT Purposes

The Digital Tracking Calorimeter (DTC) concept is that of concurrent reconstruction
of multiple proton tracks, in order to measure the range of the protons in the traversed
calorimeter layers. The DTC concept has been explored in this work through the devel-
opment of an analysis framework, which has been applied on both Monte Carlo (MC)
simulated DTC geometries as well as on experimental data from beamline measurements
performed with a DTC prototype built for a high energy physics experiment (the ALICE-
FoCal experiment).

Detector Design

The readout and data acquisition from a proton CT detector needs to be able to record
information about each proton traversing the patient: each individual proton’s position-
and direction coordinates when entering and exiting the patient, and also the proton’s
residual range after exiting the patient. These measurements must be of high resolution,
and the proton CT scan should be performed sufficiently rapid as this is a part of the
clinical workflow where minimizing the patient’s time lying on the treatment table is
essential.

The required specifications for a proton CT and an overview over the properties of the
DTC, as well as results obtained through MC simulations and results from experimental
data, have been presented in this work. The proof-of-concept calorimeter prototype was
originally destined for applications in a high energy physics regime for the ALICE-FoCal
experiment. As a result, the choice of materials and of the geometrical layout is not
optimal for use as a proton CT detector. However, the results presented in this work
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convey that the DTC is a detector concept with a promising potential in the proton CT
context.

Among the key features of the DTC is an “all-in-one” design where the entrance
layers of the calorimeter can function as the proton tracker and also a high acquisition
rate capability due to that the technology enables tracking and reconstruction of hundreds
of simultaneous proton tracks.

Range Accuracy and Uncertainty

The range uncertainty (resolution) requirements of a proton CT system is estimated to
be around 1% (Poludniowski et al., 2015). Prototype proton CT scanners meeting this
requirement have been constructed (Johnson et al., 2016). Several other prototype scan-
ners have a range uncertainty of 2%–3% (Uzunyan et al., 2013b; Scaringella et al., 2014;
Price et al., 2015).

The geometrical sampling spacing between the active sensor layers in the prototype
studied in this present work is approximately 3.3 mm tungsten, corresponding to 32 mm
Water Equivalent Thickness (WET). This is a very large sensor layer separation, and we
do not expect the range resolution, obtained when applying the detector with this design,
to be adequate for proton CT.

The measured range uncertainty is 14mmWET (8.2%) on average. The value of the
range uncertainty varies with different incident energies, from around 6.3mmWET from
the 160 MeV beam test to 25mmWET from the 188 MeV beam test.

The results show systematic errors of up to 21mmWET in range deviation, depend-
ing on the initial proton energy. These errors propagate into other parts of the analysis
(that depend on the proton energy at different depths in the detector): to the charge dif-
fusion modeling and chip sensitivity calibration. When such errors are introduced in
the simulation, systematic errors are introduced in the calculation of the nominal proton
ranges, and the calculated deviation is therefore biased. In addition, the oscillation of
the range accuracy due to the thick absorbers increases both the average systematic error
and its variation. This effect is also seen in the optimization study.

The results may be split into several categories regarding the quality of the underlying
data. If the runs with few reconstructed tracks are removed (such as the 151 MeV one),
and if the remaining data is divided into range distributions covering one sensor layer
and two sensor layers (see Table 6.1), we see that:

i) Beams covering one sensor layer have high systematic errors. The average range
is measured to be 13.4mmWET below the respective nominal ranges. Conversely,
since all protons are observed to stop close to each other, the measured range un-
certainty is artificially low with an average value of 6.8mmWET.
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Beam energy [MeV] 120 160 180 139 170 188 151
Layers covered 1 1 1 2 2 2 3
Rel. range accuracy [%] -8.4 -6.7 -9.1 -3.9 -3.7 -0.7 -13.2
Rel. range uncertainty [%] 6.1 3.6 3.5 13.9 8.3 10.8 11.0

Table 6.1: Range accuracy and uncertainty of the experimental data. The “Layers cov-
ered” number reflects how many sensor layers that are covered by the range straggling
distribution. This table is an excerpt of Table 4.3.

ii) Beams covering two sensor layers have relatively low systematic errors, with an
average value of 4.7mmWET below the respective nominal ranges. In these cases,
the range is calculated as the relative number of protons stopping in one of the two
adjacent sensor layers, and thus the estimate is more accurate. The measured range
uncertainties are in these cases larger, with an average value of 20.1mmWET. This
is, perhaps, more indicative of the reality.

Proton Intensity Capacity

In order to perform a 10 second proton CT scan, a proton intensity capacity of at least
10 million protons/s is required (Poludniowski et al., 2015). One of the advantages of
the DTC concept is that hundreds to thousands of proton tracks can be reconstructed
concurrently from a single readout frame. The ALICE-FoCal prototype has a readout
frequency of approximately 2 kHz, and if the reconstruction algorithm is able to disen-
tangle np protons tracks in a single readout frame, then the effective readout capacity is
np · 2000 protons/s.

The effective readout capacity has here been defined to be the beam intensity where
80% of the protons can be correctly reconstructed. The effective readout capacity is
calculated by reconstructing batches of MC-generated proton beams with an increasing
number of uniformly spread-out protons.

The intensity capacity of a uniformly distributed beam has been found to be in the
order of 1 million protons/s, or 60 000 protons/s/cm2. The number depends on the per-
formance of the tracking algorithm as well as on the spatial distribution of the proton
beam. An improved algorithm would increase the accuracy of the track reconstruction,
and would enable for the separation of a higher number of protons in each readout frame.

The intensity capacity presented in this work is at the high end of the intensity ca-
pacities of existing prototypes, where the current fastest proton CT systems are able to
handle 2 million protons/s (Johnson et al., 2016; Uzunyan et al., 2013a), and DeJongh
(2017) aiming for a readout speed of 10 million protons/s.
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6.2 Design Specifications for the Next DTC Prototype

A research project is currently ongoing in a joint effort between research institutions in
Bergen. The project receives financial support from Bergen Research Council, the Nor-
wegian Research Council and the University of Bergen (TOPPFORSK). The goal of the
research project is to bring a proton CT detector into the clinic for imaging during particle
therapy, through gradual improvement of thoroughly tested prototypes. At present the
aim is to design, construct and evaluate the next DTC prototype— based on experiences
from the first prototype.

The next version of the DTC applied in this project, as explored in Chapter 5, will
be designed with proton CT as its main purpose. While the design philosophy from the
first prototype is preserved, energy absorbers of less dense materials, i.e. with less proton
stopping power, will facilitate improvements of the track reconstruction as well as of the
range calculation. The next generation of sensor chips (using the “ALPIDE” chips) and
readout systems are expected to increase the proton rate capabilities significantly.

By considering several different designs and carrying out the analysis as done for the
ALICE-FoCal prototype, the simulated geometries have here been evaluated in terms of
the range accuracy, range uncertainty, tracking efficiency and economy.

6.2.1 Range Accuracy and Uncertainty

The results presented here show that both systematic errors and range uncertainties are
not far from their theoretical limits, this applies for several of the proposed designs: i.e.
the systematic errors are within 0.2–0.5mmWET for the geometries with up to 4 mm
thick absorber layers. The range uncertainty is limited by the physically inherent range
straggling: Results from MC simulations shows the uncertainty to be 4.4mmWET (us-
ing 3.5 mm thick absorber plates), compared to the 3.8mmWET range straggling. The
uncertainty is thus 15% above the range straggling imposed limit for range determina-
tion.

In the geometries where the aluminum energy absorber plates are 4 mm or thicker,
an oscillating artifact in the range determination increases the systematic range deviation
to more than 1mmWET. The range accuracy depends on the number of sensor layers
that are within the proton beam’s range straggling, and on the position of the mean value
of the range distribution relative to the position of, and thus the distance to, the most
adjacent sensor layers. The more sensor layers that are covered by the range straggling
distribution (e.g. the thinner the energy absorber layers are), the smaller this effect is.
These results reflect those of the ALICE-FoCal prototype, where range distributions cov-
ering two sensor layers showed a higher range accuracy compared to range distributions
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covering only one sensor layer.
The uncertainty of the range measurements has been found through MC simulations

to be uniform throughout the whole dynamic range of the detector (from a residual range
of approx. 20mmWET). This is a property of range telescope detectors when having
sufficient number of layers. Scintillation based calorimeters have an energy-dependent
uncertainty. In Bashkirov et al. (2016) this energy dependence is mitigated by the appli-
cation of several consecutive plastic scintillators coupled to photomultipliers. The range
accuracy and range uncertainty capabilities of the optimized DTC are comparable to cur-
rent proton CT prototypes based on such staged scintillators and parallel plate ionization
chambers (Rinaldi et al., 2014).

6.2.2 Proton Intensity Capacity

We found in Chapter 5 that by requiring that 80% of the tracks should be reconstructed
correctly, 8 protons per cm2 can be tracked for each detector “snapshot”, or readout
frame. Using realistic assumptions about the attainable performance and the capacity of
the electronic readout system (5 µs readout cycle) of the DTC design at present under
consideration, the number of protons that can be reconstructed concurrently is 1.6 million
protons/s/cm2. This number is higher than the minimum requirements of a proton CT if
the beam incident on the detector is distributed over a few cm2, and this may enable scan
times limited by other factors such as gantry or patient rotation speeds (if seated). If the
DTC is used for applications where the beam is distributed throughout the full detector
area, the reconstruction capacity is in the order of 640 million protons/s. Current proto-
types have reported readout speeds of 1–10 million protons/s (Scaringella et al., 2014;
Bashkirov et al., 2016; Naimuddin et al., 2016; DeJongh, 2017).

The reconstruction efficiency is dependent on both the applied reconstruction algo-
rithm, where significant improvement is possible, and on the specific design of the detec-
tor, i.e. the geometry, materials and optimized positioning of the material components.
The track reconstruction is simpler to design and perform with thin absorber layers, this
is reflected in the maximum proton densities that can be reconstructed with a certain
efficiency for each layout.

6.2.3 Design Recommendation

We recall that in the last chapter, we defined the optimal design of the DTC to fulfill the
following ambitions: High accuracy of the range determination; low uncertainty (stan-
dard deviation) of the range determination, limited by the inherent proton range strag-
gling; high track reconstruction efficiency, i.e. the ability to disentangle and reconstruct
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all the protons in a single readout frame; and other constraints such as economy (number
of layers), cooling and mechanical stability.

Based on these requirements and constraints, as well as on the results in Chapter 5,
we arrive at the following:

i) The lateral size of the sensor layers should be approximately 15× 27 cm2: This
corresponds to 90 ALPIDE chips per layer. The reasoning behind this is mainly
comparisons with other proton CT projects. The added value of doubling the de-
tector’s vertical dimensions is however small compared to the corresponding im-
proved range accuracy associated with a doubling of the number of layers in the
longitudinal direction.

ii) The longitudinal size of the detector should be designed with aluminum energy ab-
sorption layers between the sensor layers, this layer should be 3.5mm thick, corre-
sponding to approx. 7.5mmWET. With this thickness, around 41 layers are needed
(with 3690 chips in total) in order to fully contain the range of a 230 MeV proton
beam within the detector, including a 3 sigma range straggling longitudinal exten-
sion.

Using this geometry, the intrinsic range uncertainty is 2mmWET, compared to
the range straggling of 3.8mmWET that is added to this number in quadrature.
The oscillating pattern introduced to the range determination accuracy, due to the
layer structure of the detector, is kept below 0.2mmWET. The track reconstruc-
tion efficiency increases rapidly with decreasing absorber thickness, and from this
perspective the thickness should be kept below 4mm and as low as possible.

iii) Any material in and between the first two sensor layers, i.e. the aluminum carrier
board, should be kept as thin as possible and below 0.45mm. A thicker slab leads
to higher amounts of multiple Coulomb scattering, and the positional errors on the
proton position projected onto a phantom would be in excess of 0.5mm.

6.3 Applications of the DTC as a Proton CT Detector

6.3.1 Proton CT in a Broad Beam

If the proton beam is uniformly spread over the proposed detector area (in the order of
400 cm2), then 640 million protons/s can be reconstructed. However, this is not feasible
due to the requirement that the protons path through the patient must be reconstructed
with position information from measurements from tracker layers located before and af-
ter the patient — it would have been very difficult to match the measured proton vectors.
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For application in a broad (scattered) beam, the proton density would need to be re-
duced significantly. By using separate track detectors it would be possible to reconstruct
the tracks of individual protons in a beam with information about where, and with the
direction, the protons entered and exited the patient.

The separate track detectors would need to be of a “massless” design, i.e. with as little
material as possible in order to reduce both energy loss (before the energy measurement)
and, more importantly, the total amount of induced scattering. The error resulting from
the presence of material in the tracking layers are discussed in Section 5.5.5.

6.3.2 Proton CT in a Pencil Beam

An alternative to the broad beam proton therapy is to use the detector when applying
Pencil Beam Scanning with IMPT-enabled proton beam therapy. If the proton beam is
sufficiently narrow and well defined on the upstream side of the patient, e.g. precisely
measured by beam profile monitors or DTC-type sensor layers, it will be possible to
track protons from the assumed upstream beam position, through the patient, and to their
measured exit position from the patient.

If the upstream positions of individual protons are estimated on basis of the lateral
distribution of the proton beam, before entering the patient, an uncertainty is added to the
individual proton’s path in the calculation of the Most Likely Path of the proton through
the patient. This uncertainty would need to be investigated further before this approach
is considered.

In Section 5.5.1 we saw that the lateral beam profile, at the front face of the DTC,
originating from a realistic, thin pencil beam (with σx = 4mm and σy = 2mm), has a
2σ elliptic area of approximately 1.3 cm2, in which 95% of the protons are contained.
With the incorrect assumption of a uniform beam intensity within that area, this number
corresponds to a beam intensity capacity of 2 million protons/s. A study of the track
reconstruction performance using Gaussian beam profiles should be conducted in order
to obtain the expected efficiency values in a pencil beam setup, however the actual value
is expected to be somewhat lower without improvements in the track reconstruction al-
gorithm.

6.3.3 Helium CT

The thesis as a whole has been concentrated on applications of the DTC as a proton CT
detector. An emerging field is that of particle CT where especially helium CT is under
consideration due to its favorable properties regarding the reduced multiple Coulomb
scattering.
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InHansen et al. (2014) the twomodalities are compared: in terms of spatial resolution,
an ideal Helium CT reaches MTF10

* at 18.2 lp/cm, whereas proton CT has an MTF10 at
9.4 lp/mm. The significantly higher resolution (at a similar CT Dose Index of 10 mGy)
indicates that helium CT is a promising modality.

The DTC should be suitable for reconstruction of particles in a helium beam. Mea-
surements of the pixel charge clustering is expected to yield information about particle
charge (which is highly correlated to the energy loss), and therefore, particle species
(Aricò et al., 2017). This would be an effective discrimination of secondary particles, a
necessity in helium CT due to the high proton content of the beam. The particle recon-
struction should be simpler than with protons, since the helium ions scatter less. Last,
while having higher energies, the range of the helium beam is equal to the range of the
proton beam. As a result, the DTC could be applied in a helium beam without having to
increase or decrease the thickness of the energy absorbers.

6.3.4 Proton CT with Laser Accelerated Protons

Another potential application for the DTC concept is its application in combination with
laser accelerated protons (LAP) (Daido et al., 2012). While no clinical implementation
of LAP has been shown, several feasibility studies of beam delivery (Scuderi et al., 2014)
and treatment quality (Hofmann et al., 2015) are available. LAP is in principle expected
to deliver protons of therapeutic energies in very short picosecond bursts with kHz repeti-
tion rates. The DTC might be capable of resolving the resulting bursts of a few thousand
protons per readout cycle by exploiting the high-granularity of the sensors which allows
simultaneous tracking of individual protons as presented in this work.

6.4 Calculations of the Proton Range

In Chapter 2 the accuracy of MC simulations and analytical proton range calculation
models was evaluated.

6.4.1 Accuracy of the MC Simulated Proton Range Distributions

The objective of the MC comparison study has been to compare simulated range distri-
butions of protons traversing different materials, obtained with the three general purpose
MC programs GATE, MCNP6 and FLUKA. This was performed by assessing the agree-
ment between the results for the mean projected proton range, the range straggling, the

*Modular Transfer Function: The MTF10 value expresses the resolution (in terms of line pairs per cm)
where the line pair contrast is degraded to 10% of its original value.
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transverse beam spread, and the fraction of protons lost from the primary beam due to
nuclear interactions. The MC results were also compared to data from PSTAR (Berger
et al., 2005) and to data from Janni (1982).

The proton ranges agree within 0.5%, both between the MC programs and to the
experimental data. The range at 230 MeV predicted by MCNP6 in water deviates by 1.3
mm from the proton ranges calculated by FLUKA and GATE. A possible reason for this
is the ionization potential of water value used by MCNP6. Although it is reported that
MCNP6 uses the recommended value of 75 eV as the ionization potential of water, the
results between GATE and MCNP6 agree better at an ionization potential value of about
73 eV.

The range straggling values exhibit some discrepancies: the maximum relative dif-
ference is 12.5% in water, 4.5% in aluminum and 13.7% in the detector geometry. In the
case of water and aluminum, the average values from the MC programs are consistent
with the experimental data. The results for the fraction of nuclear interactions in water
and aluminum agree with Janni within the uncertainties of the experimental data, and
within 7.5% to each other. The results for the transverse beam spread show some dis-
crepancies, and the GATE beam spread is significantly smaller compared to MCNP6 and
FLUKA: this is consistent with existing studies (Bednarz et al., 2011; Kimstrand et al.,
2008; Grevillot et al., 2010; Lin et al., 2017; Mertens et al., 2010).

6.4.2 Accuracy of the Analytical Proton Range Models

For benchmarking purposes and for the calibration of proton CT systems, it is important
to have an accurate calculation scheme between proton initial energies and ranges. Sev-
eral parametrizations of the energy-range relationship are available, with different levels
of complexity and accuracy. In Section 2.2 four different models were compared and
evaluated on their accuracy in reproducing tabulated energy-range data from the PSTAR
database (Berger et al., 2005).

The Bragg-Kleeman model is the least accurate at a 75th percentile error of 3%,
across different initial energies. The “sum of exponentials” model and linear interpo-
lation model are similar at around 0.3%, while the spline interpolation model has a 75th

percentile error of of 0.003%.
The parameter values used for the Bragg-Kleeman model in this work differs from

both Bortfeld (1997) and Boon (1998), as shown in Table 2.7. The median range error
using the model parameters obtained here is lower compared to the median error on
this dataset using the other model parameters. The discrepancy might arise from small
differences between the semi-empirical PSTAR data values used here and the ICRU49
data tables used by the above-mentioned studies, and from the selection of data points to
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use for fitting.

6.5 Resolution Improvement by Bragg Curve Fitting of
Individual Proton Tracks

One topic that has not yet been addressed is to what degree the Bragg curve model fitting
increases the accuracy of the range accuracy and range uncertainty. In this section, a
short re-analysis of the data from Chapter 5 has been performed: With the exception that
the estimated range from each proton track history is defined to be the position of its last
traversed layer.

Effects on Range Uncertainty

In order to characterize the effect of the Bragg curve fitting on the range uncertainty,
we study the added width of the reconstructed range distribution due to the analysis
and detector geometry. By using the simple last-layer estimator for the proton range, the
intrinsic (added) uncertainty in the optimization geometries (energy absorbers consisting
of 2–6 mm aluminum) increases by 20%–45%. Specifically, for the geometry with 4
mm absorbers, the increase in the intrinsic uncertainty is from 2.1 mm to 3.0 mm. This
uncertainty is still below the inherent range straggling, and thus the increase in absolute
range uncertainty is smaller (5%–10% increase).

Effects on Range Accuracy

For the range accuracy determination, we consider the amplitude of the oscillation arti-
fact that we have seen in both experimental data from the ALICE-FoCal prototype, and
during the geometry optimization process. This choice of variable was made because any
systematic range inaccuracies that are constant throughout the complete detector can be
removed by calibration, and the remaining inaccuracies are due to the relative positioning
between the Bragg peak position and the sensor layers.

By using the simple last-layer estimator for the proton range, the increase in the wob-
bling is strongly dependent on the geometry under consideration. In the 4 mm aluminum
absorber geometry, the increase in amplitude is from 0.3mmWET with Bragg curve fit-
ting, to 0.4mmWET without (10% increase). For the 6 mm aluminum absorber case,
the increase is from 2.2mmWET to 3.1mmWET (40% increase).
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Conclusion

7.1 The Proof-of-Concept Prototype Detector

In this thesis, the feasibility of applying a proof-of-concept version of the Digital Track-
ing Calorimeter (DTC) in a proton CT system has been shown. Methods have been
developed for the purpose of calculating the energy deposited by protons, by modeling
of the charge diffusion process of electron-hole pairs liberated by traversing protons in
digital pixel sensors; for performing the subsequent track reconstruction through mul-
tiple sensor layers separated by energy absorbers; and for reconstruction of the initial
energy of the proton tracks through the fitting of Bragg curve models. The above meth-
ods have been presented and evaluated, using results from both Monte Carlo simulations
and experimental measurements.

The results of this work lead to the conclusion that the DTC can be used for track
reconstruction and range estimation for a significant number of concurrent proton tracks
at therapeutic energies. The materials used in the current version of the DTC are opti-
mized for applications in a high energy physics experiment. Due to this, every sensor
layer is separated by tungsten absorbers of 32 mm Water Equivalent Thickness (WET).
This sets an upper limit to the accuracy with which the range and energy of protons can
be determined in the existing prototype.

The results from this proof-of-concept tracking calorimeter shows that a next version
that is optimized for proton CT purposes has the potential of enabling fast and accurate
determination of the ranges of individual protons in a therapeutic proton beam.

7.2 Optimization for the Next Prototype

In Chapter 5 we investigated the performance of different conceptual designs of the next
generation Digital Tracking Calorimeter (DTC) using MC simulations together with the
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analysis framework developed for the proof-of-concept DTC prototype.
The analysis was performed by combining individual proton tracking in a high-granularity

pixel sensor range telescope and Bragg curve modeling of each proton’s energy loss.
The DTC has the capability of tracking more than 1.6 million protons/s/cm2, assum-
ing realistic electronics- and design proposals. The range uncertainties are close to the
range straggling limit, and systematic errors in the range determination are kept below
0.3mmWET throughout the complete detector. By considering the presented results,
the optimal conceptual design is 3.5 mm aluminum.

The first two layers of the DTC are used both for tracking and determination of the
proton’s incoming vector. An aluminum slab is required for mechanical stability and
cooling purposes, however due to proton scattering, this slab should have a thickness of
maximum 0.45 mm for the error in the projected position determination not to exceed
0.5 mm.

The improvement achieved by using absorbers of thicknesses 3 mm or less is negligi-
ble due to the inherent range straggling limit for the range uncertainty. Thicker absorbers,
however, yield a systematic oscillating artifact in accuracy of the the range determina-
tion, and at thicknesses of 5 mm and higher this effect will degrade the accuracy. In
terms of the reconstruction efficiency, a thinner absorber improves the efficiency: The
thickness should not be significantly above 3 mm in order to avoid a degrading of the
efficiency and of the range resolution accuracy. However, when considering realistic
construction constraints, a 4 mm absorber requires fewer sensor layers (39 layers) com-
pared to the 3 mm (48 layers) design, and thus the 3.5 mm design with 41 layers could
represent an optimal trade-off between efficiency/accuracy and construction constraints.

These results provide input to the conceptual design of the next generation DTC in a
proton CT detector assembly, currently under development at the University of Bergen
and at the Western Norway University of Applied Sciences.

7.3 Proton Range Calculations

In Chapter 2, the proton range accuracy calculation using different approaches were de-
scribed. First, several different Monte Carlo software packages were compared in terms
of proton range, range straggling, lateral scattering and also with respect to the nuclear
interactions taking place. Similar results were obtained for the different frameworks
compared, however by using GATE, a reduced amount of scattering was observed. The
proton range deviation between the MC programs is of the order of sub-millimeter in the
therapeutic range between 50 MeV and 230 MeV. The exceptions here are the ranges
in water from MCNP6, which applies different values for the mean ionization potential
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for water compared to the other software packages: the best correspondence between
MCNP6 and GATE is achieved when the mean ionization potential value for water in
GATE is set to 73 eV.

Secondly, regarding analytical models of the proton range, it was found that a look-
up-table approach combined with spline interpolation between initial proton energies and
the corresponding proton ranges is superior in accuracy, compared to using the Bragg-
Kleeman relationship, however a differentiation of the latter yields an accurate energy
loss curve for the individual protons.

7.4 Outlook

In this last Outlook section, we look towards the future and the upcoming work. We ask
here which efforts that need to be carried out in order to ensure that a clinical proton CT
scanner — based on the Digital Tracking Calorimeter concept — is realized? Several
paths are proposed below, either as improvements to some of the techniques presented
in this thesis, or as generalizations of these tailored to the next prototype.

7.4.1 The Next DTC Prototype

Efforts are currently being made in order to develop the next prototype of the DTC.
To this end, a conceptual design was proposed in Chapter 5 to optimize the pertinent
scanner properties in regards to the track reconstruction efficiency and range resolution.
However, research and development of this detector is not a trivial project, and the rec-
ommendations only touch upon a small fraction of the overall system design. Several
other key aspects needs further exploration: Regarding the physical design of the scan-
ner, the heat sink design for cooling and the actual cooling requirements, mechanical
stability, scanner mounting, the bonding process between the ALPIDE chips and carrier
boards, readout cables and connector design, readout architecture, FPGA and bandwidth
requirements. Regarding the software and analysis; development of fast enough and sta-
ble on-line image reconstruction — including proton tracking inside the calorimeter —
and improved an Monte Carlo design, proton range modeling, calibration routines and a
new charge diffusion model taking into account the specific properties of the ALPIDE
chip.

7.4.2 Proton Track Reconstruction

The proton track reconstruction system introduced in this thesis, both for the DTC pro-
totype using the ALICE-FoCal detector and for the next DTC prototype, has limitations
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on the track density that can be reconstructed correctly. Several improvement strategies
are possible for further development, and an improved track reconstruction algorithm
will benefit the DTC concept by allowing for higher beam intensities before saturation
of the reconstruction process due to too high particle density. Some of the strategies are
outlined here:

i) Optimization based on forward and backward reconstruction (Strandlie and Früh-
wirth, 2010). Since the track density is lower towards the distal part of the detector,
it might be valuable to start the tracking process in that area. In addition, if the
tracking is performed simultaneously in both directions, track segments that match
in both directions are stored, and track segments that do not match can be treated
with more care.

ii) Weighted recursion track following. Due to computational limits, a large number of
tracks are discarded during the track-following of a single track. As presented here,
only the “best” next-step candidate is kept at each step. The extreme alternative is
to perform a full recursive tracking, splitting the track when multiple possibilities
are available, before evaluating all possible tracks at the end: This procedure is
quite computationally demanding. A possible combination of the two, proposed as
the winning contribution to the “RAMP Machine Learning for Track Reconstruc-
tion” data challenge (Amrouche et al., 2017), is such: Follow all tracks recursively
(within a given search radius) while keeping score on each track candidate, tallying
a score based on e.g. total angular change relative to the expected scattering. If a
single track exceeds the maximum score value allowed, discard it. This way, the
computational demand is limited, while exploring a larger fraction of the following
track combinations.

iii) Using mathematical techniques from graph theory; Siklér (2017) suggests con-
structing a set of nodes representing the detector hits. The parts of the track that are
simple to reconstruct are represented as nodes with few connections, and “bridge”
nodes with many connections are ambiguous track portions with many solutions.
An optimization routine can be applied to minimize the χ2 value throughout the
complete graph.

iv) Another approach is to connect two and two complete layers: Instead of finding the
most-probable-connection between two and two hits separately, based on extrapo-
lation from one direction, two neighboring layers can be simultaneously optimized
through the minimization of the sum of angular change coming from both direc-
tions. This approach reduces the problem of deciding too early on a track candidate.
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v) Approaches based on machine learning and so-called deep neural networks: The
details of such an approach is not yet clearly defined, however in many track recon-
struction contexts neural networks are of value and several frameworks for imple-
mentation exist — such as outlaid in Farrell et al. (2017).

7.4.3 Charge Diffusion Modeling

The charge diffusion models presented in Section 4.3 are important since they contribute
to an increase of the resolution of the proton range calculation. However, attempts to
model the process analytically (work performed in a project together withHansen (2017))
did not lead to results that sufficiently explain the experimental data. In Chapter 4, some
shortcomings of the model were discussed. In addition, the measurement data of the
proton’s instantaneous energy loss is not trivial to understand and model. It is desirable
to extend this model, and to include more experimental data, to enable an analytical
model of the charge diffusion process.

In addition, the modeling was performed on data from the MIMOSA23 sensor chip.
The next DTC prototype is based on the ALPIDE chip, with different characteristics.
Carefully designed experiments should be performed to record data at a known spectrum
of energy loss values, and the resulting charge diffused clusters from different particle
species should be compared to their energy loss.

A last point in this section is that by calculating the Edep values of the particle track, it
should be possible to perform particle identification (PID). This is because the Edep value
is proportional to the projectile charge, and therefore the plateau Edep value would help
identify differently charged particles. If used in an helium or carbon beam, a PID system
would be valuable in removing secondary particles such as protons.

7.4.4 The Clinical Proton CT Scanner

Last but not least, it is a long way from a prototype proton CT to a clinical proton CT.
While not in the scope of this thesis, it is worth reflecting upon some of the clinical re-
quirements: Gantrymounting, rotation of imaging system (or even rotation of the patient,
if possible without organ motion, such as rotation of a seated patient in the horizontal
plane), system footprint and radiation hardness of the sensor. These requirements are
secondary in the current design of the next prototype, however they need to be consid-
ered during the project before arriving at the design of a clinical proton CT system based
on the Digital Tracking Calorimeter concept.
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Appendix B

Calculation of the Range Oscillation
Amplitude

This appendix aims at calculating the magnitude of the oscillation error in the range
determination in in the optimization study of Chapter 5. The artifact is characterized by
a sinusoidal perturbation of the range accuracy.

The origins of the artifact is simple: The range straggling distribution of a proton
beam spans several sensor layers (see Fig. 5.6). The range accuracy depends on the
number of sensor layers covered, and on the position of the mean value of the range
distribution relative to the sensor layers. The more sensor layers that are covered by the
range straggling distribution (e.g. thinner energy absorbers), the smaller the effect is.

A quantitative treatment of the effect can be performed through a spectral analysis of
the range accuracy distributions of Fig. 5.9. A Fourier transform has been applied to the
distributions, as shown in Fig. B.1.

For each geometry, the amplitude has been measured at several locations in the abso-
lute deviation graph (left). Then, the height of the observable peak in the corresponding
Fourier spectrum is measured. In addition, a measurement of the amplitudes of the os-
cillation is performed, however this approach is quite sensitive to noise. The heights of
the peaks in the spectra are measured, and these are compared to the amplitude measure-
ments. While the Fourier spectra are more sensitive to small oscillation amplitudes, the
peak heights needs to be connected to the oscillation amplitude. This is done by scaling
the Fourier peak heights to the measured amplitudes, as seen in Fig. B.2.

In general the amplitudes of the oscillation are kept within 0.5 mm WET if the ab-
sorber is thinner than 4.5 mm Al, and below 0.2 mmWET for the 3.5 mm Al geometry:
see Fig. B.2 for the relationship between the absorber thickness and the oscillation error.
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Figure B.1: Range error and corresponding Fourier transform of 2 mm, 4 mm and 6
mm absorber geometries. This is performed as a quantitative analysis of the oscillation
artifact in Fig. 5.9.
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Figure B.2: Measurements of the peak-to-peak amplitude of the wobbles and the (scaled)
Fourier amplitude.
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Appendix C

Overview of the Software Framework

This appendix is an overview of the program code developed for this work, the Dig-
ital Tracking Calorimeter Toolkit. It is available for download at www.github.com/
HelgeEgil/focal.

File 1 Analysis/Analysis.C (.h): All the user-written code for various analysis rou-
tines, visualization of results, and storing to files are contained in this file. Func-
tions such as drawBraggPeakGraphFit(...) for the Bragg curve fitting, draw-
Tracks3D for a 3D visualization of the track reconstruction process and drawData-
Profile for 2D profile of the proton beam are located here.

File 2 Load.C: The initialization macro for the software framework. Loads and executes
the files required needed to run the program by the command: $ root Load.C.

File 3 RootFiles/Wrapper.C: A ROOT-specific file that includes the program code and
header files of the framework. It is run automatically from Load.C.

File 4 Classes/Track/Track.C (.h): The main file of the Track class. Includes the
various “getters” and “setters” of the class, such as appendCluster(*cluster)
and getX(idx).

File 5 Classes/Track/trackFitting.C: Functions to perform the Bragg curve fitting
of the track, including a track scoring function.

File 6 Classes/Track/trackAngleCalculations.C: Geometrical calculations on a tr-
ack object, such as multiple Coulomb scattering angles of the full track and an-
gular changes between two track segments.

File 7 Classes/Track/trackClusterProperties.C: Searches algorithms on Cluster
objects inside the tracks: getClusterIdx(x,y,layer)finds Cluster objects from
3D coordinates and isClusterInTrack(*cluster) checks whether the argument
pointer is included in the Track object.

www.github.com/HelgeEgil/focal
www.github.com/HelgeEgil/focal
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File 8 Classes/Track/trackExtrapolations.C: Calculates interpolations and extrap-
olations of Track object. The function extrapolateToLayer0() is able to ex-
trapolate a track that misses its first layer cluster back to the first layer.

File 9 Classes/Track/trackProperties.C: Tests the Track for different properties such
as doesTrackEndAbruptly() to check if it ends in a Bragg peak, and getNMissing-
Layers() to count the number of layers missing from the track.

File 10 Classes/Track/trackPreSensorMaterial.C: Evaluates whether the track tra-
versed any scintillators before entering the DTC, and calculates the energy loss
from any possible scintillators traversed.

File 11 Classes/Track/trackRangeCalculations.C: Calculates the track lengths: the
projected range, the CSDA range, the projected range up to the input layer etc.

File 12 Classes/Track/Tracks.C (.h): A Tracks object contains a collection of Track
objects. It contains many functions that are redirected to the Track objects, and
some which are performed on all tracks, such as getTracksWithConflictClust-
ers() and checkLayerOrientation() which tries to find the best alignment cor-
rection values. In isLastEventIDCloseToFirst(), a track assumed to be recon-
structed wrongly is evaluated in how close the “true” track endpoint is to the
“wrong” track endpoint.

File 13 Classes/Track/tracksOptimization.C: Functions that improve the track re-
construction, such as removeTracksLeavingDetector() and removeTracksEn-
ingInBadChannels().

File 14 Classes/Layer/Layer.C (.h): Implements a 2D histogram representing a pixel
layer. Includes simple functions such as Fill(x,y), getTH2F() and also more
complex functions such as retrieving Hit objects with findHits() and artificial
charge diffusion of the pixels with diffuseLayer(TRandom3* rnd).

File 15 Classes/CalorimeterFrame/CalorimeterFrame.C (.h): The collection of sev-
eral Layer objects that together make a full readout frame.

File 16 Classes/Hit/Hit.C (.h): A single Hit object that represents an activated
pixel. Its functions includes “setters” and “getters”.

File 17 Classes/Hit/Hits.C (.h): A collection of many Hit objects. Includes some
optimization routines such as the indexing of the Hits objects by layer and by its
vertical position in a layer.
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File 18 Classes/Hit/findClusters.C: Uses a Hits object to find connected clusters
from the charge diffusion process with findClustersFromHits(), and findClus-
tersHitMap() to get a vector of Hits objects in order to visualize the cluster
shapes.

File 19 Classes/Cluster/Cluster.C (.h): The source file for the Cluster class. In-
cludes a sorting implementation for quick sorting inside Clusters objects, “get-
ters” and “setters” as well as routines for calculating the deposited energy from
the cluster size.

File 20 Classes/Cluster/Clusters.C (.h): Contains all the necessary logistics for
the treatment of Clusters objects, which is the container for several Cluster
classes.

File 21 Classes/Cluster/findTracks.C: The file containing all the track reconstruc-
tion algorithms, where findCalorimeterTracks() is used to reconstruct from the
ALICE-FoCal geometry and findCalorimeterTracksALPIDE() to reconstruct us-
ing the optimized DTC geometry with smaller absorber layers.

File 22 Classes/DataInterface/DataInterface.C (.h): Different functions for read-
ing ROOT files from experimental data with getDataFrame() and from MC data
with getMCFrame() and also for reading different MC data in different ways, such
as to 3D histograms (getMCData()).

File 23 GlobalConstants/Constants.h: Many of the settings for the runs are configured
here: Geometry, number of protons per analysis batch, absorber materials, ab-
sorber thicknesses, choices of algorithms to use, turn scintillator energy loss com-
pensation on and off and more.

File 24 GlobalConstants/MaterialConstants.C: The parameters for range calculation
in different geometries and in water, multiple scattering calculations and calcu-
lation of parameters for the Bragg-Kleeman equation. Reads comma-separated
value-files from Data/Ranges.

File 25 GlobalConstants/RangeAndEnergyCalculations.C: All the different functions
of evaluating the energy-range splines, such as getEnergyFromTL(), getWEPL-
FactorFromEnergy() and the getEnergyFromDegraderThickness() function to
calculate the remaining energy after the water modulator used to generate realistic
energy spectra.
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File 26 GlobalConstants/Misalign.C (.h): Read chip alignment values from Data/-
ExperimentalData/Alignment.txt and apply the (x, y, θ) values on all Cluster
objects using the correctClusters(Clusters *c) function.

File 27 HelperFunctions/getTracks.C (.h): A organizing file to do the data retrieval,
finding the hits and then the cluster, applying the different corrections and then
performing track reconstruction. All this is done using the loadOrCreateTracks()
function, which also permits for saving or loading the Tracks object instead of
performing the track reconstruction every time.

File 28 HelperFunctions/Tools.C (.h): Various tools required for the analysis, such
as diffmmXY(Cluster*, Cluster*), getEdepFromCS(int) and getDotProduct-
Angle(Cluster*, Cluster*, Cluster*).

File 29 Scripts/findRange.C (.h): Loops through a “fully scored” MC simulation
ROOT file to find the final range of all primary particles, plot and calculate the
mean range R and range straggling σR.

File 30 Scripts/findManyRanges.C: Runs findRange several times for different ge-
ometries or different initial energies (through the water modulator of different
thicknesses) and stores the results in OutputFiles/findManyRangesDegrader.csv.
This output file is then trimmed (manually) and put into Data/Ranges/ for usage
as a look-up-table for that specific geometry.

File 31 Scripts/makePlots.C: Many of the functions in Analysis.C and others need
to be run many times for a desired output. In that case, the results are stored in
temporary files such as OutputFiles/result_makebraggpeakfit.csv and their
contents are plotted using this script.



Appendix D

Code Examples from the Software
Framework

The following appendix shows some (simplified) code snippets for data readout, pixel
clustering and proton tracking. Not all used functions are defined, however their work-
ings should be clear from the naming. Memory management, timing and error handling
code are removed for readability. The full code listing is available at Github:
https://github.com/HelgeEgil/focal/.

Data readout

1 vo id D a t a I n t e r f a c e : : ge tDa taFrame ( i n t runNumber , Ca l o r ime t e rF r ame * cf ,
i n t ene rgy ) {

2 / / Reads e x p e r im e n t a l d a t a and o u t p u t s t o a h i s t o g r am c f
3 / / The runNumber i s t h e b a t c h index
4 / / For each run , kEventsPerRun r e a d o u t e v e n t s a r e used
5
6 i n t eventIDFrom = runNumber * kEventsPerRun ;
7 i n t event IDTo = eventIDFrom + kEventsPerRun ;
8
9 / / The d a t a f i l e was c o nv e r t e d i n t o TLeaf f o rma t i n U t r e c h t
10 TS t r i n g * f i l e n ame = Form ( ” Data / Expe r imen t a lDa t a / DataFrame_%i_MeV .

r o o t ” , ene rgy ) ;
11 TF i l e * f i l e = new TF i l e ( f i l e n ame ) ;
12 TTree * t r e e = ( TTree * ) f i l e −>Get ( ” t r e e ” ) ;
13
14 / / Read ou t t h e i n d i v i d u a l v a r i a b l e s ( ’ l e a f s ’ ) from t h e TTree
15 TLeaf * p ixe lX = t r e e −>GetLeaf ( ” fDataFrame . fX” ) ;
16 TLeaf * p ixe lY = t r e e −>GetLeaf ( ” fDataFrame . fY” ) ;
17 TLeaf * p i x e l L a y e r = t r e e −>GetLeaf ( ” fDataFrame . fLaye r ” ) ;
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18
19 f o r ( i n t i = eventIDFrom ; i <eventIDTo ; i ++) {
20 t r e e −>Ge tEn t ry ( i ) ; / / Load ev en t i n t o t r e e
21 i n t numberOfLeaf s InEven t = pixe lX−>GetLen ( ) ;
22 f o r ( i n t j =0 ; j <numberOfLeaf s InEven t ; j ++) {
23 / / +nx / 2 : 0 −> nx i n s t e a d o f −nx / 2 −> nx / 2
24 i n t x = pixe lX−>GetValue ( j ) + nx / 2 ;
25 i n t y = pixe lY−>GetValue ( j ) + ny / 2 ;
26 i n t z = p i x e lLay e r −>GetValue ( j ) ;
27
28 / / F i l l h i s t o g r am wi th t h i s s i n g l e a c t i v a t e d p i x e l
29 cf−> f i l l A t ( z , x , y ) ;
30 }
31 }
32 }

Track retrieval

1 Tracks * g e tT r a c k s ( i n t Runs , f l o a t ene rgy ) {
2 / / Read t r a c k s from d a t a f i l e , r e t u r n Tracks o b j e c t
3
4 D a t a I n t e r f a c e * d i = new D a t a I n t e r f a c e ( ) ;
5 Ca l o r ime t e rF r ame * c f = new Ca lo r ime t e rF r ame ( ) ;
6 Tracks * t r a c k s = new Tracks ( ) ;
7 Tracks * t r a c k sA l lRun s = new Tracks ( ) ;
8 Mi s a l i g n *m = new Mi s a l i g n ( ) ;
9
10 f o r ( i n t i =0 ; i <Runs ; i ++) {
11 di−>ge tDa taFrame ( i , c f , ene rgy ) ;
12 H i t s * h i t s = cf−> f i n dH i t s ( ) ; / / Hi s togram to ( x , y , l a y e r ) h i t

o b j e c t s
13 C l u s t e r s * c l u s t e r s = h i t s −> f i n dC l u s t e r s F r omH i t s ( ) ; / / c onnec t

c l u s t e r e d h i t s
14
15 / / Remove a l l c l u s t e r s wi th s i z e <2 ( n o i s e )
16 c l u s t e r s −>r emoveSma l lC l u s t e r s ( 2 ) ;
17
18 / / C o r r e c t f o r ch i p m i s a l i gnmen t
19 m−> c o r r e c t C l u s t e r s ( c l u s t e r s ) ;
20
21 t r a c k s = c l u s t e r s −> f i n dC a l o r im e t e r T r a c k s ( ) ;
22
23 / / Do d i f f e r e n t t r a c k o p t im i z a t i o n r o u t i n e s
24 t r a c k s −>e x t r a p o l a t eT oL a y e r 0 ( ) ;
25 t r a c k s −> s p l i t S h a r e d C l u s t e r s ( ) ;
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26 t r a c k s −>r emoveT r a ck sLeav i ngDe t e c t o r ( ) ;
27 t r a c k s −>r emov eT r a c kCo l l i s i o n s ( ) ;
28 t r a c k s −>removeTracksEnd ingInBadChanne l s ( ) ;
29
30 f o r ( i n t j =0 ; j < t r a c k s −>G e t E n t r i e s F a s t ( ) ; j ++) {
31 i f ( ! t r a c k s −>At ( j ) ) c o n t i n u e ; / / Sk ip removed t r a c k s . . .
32 t r a c k sA l lRun s −>appendTrack ( t r a c k s −>At ( j ) ) ;
33 }
34 }
35 r e t u r n t r a c k sA l lRun s ;
36 }

Pixel clustering

The code snippet below is in reality a version of DBSCAN, however it is written from
scratch due to how some of the information needs to be stored.

1 C l u s t e r s * H i t s : : f i n dC l u s t e r s F r omH i t s ( ) {
2 C l u s t e r s * c l u s t e r = new C l u s t e r s ( ) ;
3
4 f o r ( i n t l a y e r =0 ; l a y e r <numberOfLayers ; l a y e r ++) {
5 i n t l aye r I dxF rom = g e t F i r s t I n d e xO fL a y e r ( l a y e r ) ; / / o p t i m i z a t i o n
6 i n t l a y e r I d xTo = ge tLa s t I n d exO fLaye r ( l a y e r ) ; / / o p t i m i z a t i o n
7
8 c h e c k e d I n d i c e s = new vec t o r < i n t > ;
9
10 f o r ( i n t i = l aye r I dxF rom ; i < l a y e r I d xTo ; i ++) {
11 i f ( i s I t em I nV e c t o r ( i , c h e c k e d I n d i c e s ) ) {
12 c o n t i n u e ;
13 }
14
15 boo l foundAnyNeighbours = f a l s e ;
16 f o r ( i n t j =0 ; j < ny ; j ++) { / / some o p t im i z a t i o n om i t t e d
17 i f ( i == j ) c o n t i n u e ; / / compar ing t h e same h i t
18 i f ( abs ( getX ( i ) − getX ( j ) ) <= 1 && abs ( getY ( i ) − getY ( j ) ) <=

1) {
19 foundAnyNeighbours = t r u e ;
20 b r eak ;
21 }
22 }
23
24 i f ( foundAnyNeighbours ) {
25 ve c t o r < i n t > exp and edC l u s t e r = new vec t o r < i n t > ;
26 ve c t o r < i n t > toCheck = new vec t o r < i n t > ;
27 i n t c u r r e n t C a n d i d a t e = 0 ;
28
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29 / / F ind a l l h i t s i n c u r r e n t c l u s t e r
30 wh i l e ( toCheck−>empty ( ) ) {
31 c u r r e n t C a n d i d a t e = toCheck−>back ( ) ; / / l o ad l a s t e n t r y
32 toCheck−>pop_back ( ) ; / / remove from l i s t
33 ch e ck ed I nd i c e s −>push_back ( c u r r e n t C a n d i d a t e ) ;
34 f l o a t x = getX ( c u r r e n t C a n d i d a t e ) ;
35 f l o a t y = getY ( c u r r e n t C a n d i d a t e ) ;
36
37 / / F ind a l l n e i g h bo r s from h i t
38 n e x tC a n d i d a t e s = new vec t o r < i n t > ;
39 f o r ( i n t j =0 ; j < ny ; j ++) { / / some o p t im i z a t i o n om i t t e d
40 i f ( c u r r e n t C a n d i d a t e == j ) c o n t i n u e ;
41 i f ( abs ( x − getX ( j ) ) <= 1 && abs ( y − getY ( j ) ) <= 1) {
42 nex tCand i d a t e s −>push_back ( j ) ;
43 }
44 }
45
46 / / Push a l l found n e i g hbou r s i n t o toCheck l i s t
47 / / Excep t f o r ones a l r e a d y checked . . .
48 boo l i s InChecked , i s InToCheck ;
49 i n t n e x tCand i d a t e ;
50
51 wh i l e ( ! n ex tCand i d a t e s −>empty ( ) ) {
52 n ex tCand i d a t e = nex tCand i d a t e s −>back ( ) ;
53 n ex tCand i d a t e s −>pop_back ( ) ;
54
55 i s I nChecked = i s I t em I nVe c t o r ( n ex tCand i d a t e , c h e c k e d I n d i c e s

) ;
56 i s InToCheck = i s I t em I nVe c t o r ( n ex tCand i d a t e , toCheck ) ;
57
58 i f ( ! i s I nChecked && ! i s InToCheck ) {
59 expandedC lu s t e r −>push_back ( n e x tC and i d a t e ) ;
60 toCheck−>push_back ( n e x tC and i d a t e ) ;
61 }
62 }
63 }
64 appendNe i ghbou r sToC lu s t e r s ( expandedC lu s t e r , c l u s t e r s ) ;
65 }
66 }
67 }
68 }
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Track reconstruction

The following code is the track reconstruction code as was written for the experimental
data. The code was slightly modified for the later geometry optimization project: With
the main difference being how the search cone radius is calculated.

1 Tracks * C l u s t e r s : : f i n dC a l o r im e t e r T r a c k s ( ) {
2 Tracks * t r a c k s = new Tracks ( ) ;
3 i n t s t a r t F r omLay e r = 0 ;
4
5 MCSMu l t i p l i c a t i o nFa c t o r = 3 ; / / Sea r ch cone s i z e , i n he ade r
6 f i ndTrack sF romLaye r ( t r a c k s , s t a r t F r om l a y e r ) ;
7
8 MCSMu l t i p l i c a t i o nFa c t o r = 5 ;
9 f i n dT r a c k sF r om l a y e r ( t r a c k s , s t a r t F r omLay e r ) ;
10
11 / / Sometimes t h e t r a c k s does no t r e g i s t e r i n t h e 1 s t l a y e r
12 / / So t r y a t r a c k r e c o n s t r u c t i o n s t a r t i n g from l a y e r 1
13 s t a r t F r omLay e r = 1 ;
14 f i ndTrack sF romLaye r ( t r a c k s ) ;
15 }
16
17 Tracks * C l u s t e r s : : f i ndTrack sF romLaye r ( T racks * t r a c k s , i n t

s t a r t F r omLay e r ) {
18 C l u s t e r s * s e ed s = new C l u s t e r s ( ) ;
19 i n t l aye r I dxF rom = g e t F i r s t I n d e xO fL a y e r ( s t a r t F r omLay e r ) ;
20 i n t l a y e r I d xTo = ge tLa s t I n d exO fLaye r ( s t a r t F r omLay e r ) ;
21
22 f o r ( i = l aye r I dxF rom ; i < l a y e r I d xTo ; i ++) {
23 i f ( ! At ( i ) ) c o n t i n u e ;
24 i f ( i sUsed ( i ) ) c o n t i n u e ; / / C l u s t e r i s a l r e a d y i n t r a c k
25 seeds −>app endC l u s t e r ( At ( i ) ) ;
26 }
27
28 f o r ( i n t i =0 ; seeds −>G e t E n t r i e s F a s t ( ) ; i ++) {
29 C l u s t e r * s t a r t i n g S e e d = seeds −>At ( i ) ;
30 i f ( s t a r t i n g S e e d ) c o n t i n u e ;
31
32 Track * b e s t T r a c k = t r a c k P r o p a g a t i o n ( s t a r t i n g S e e d ) ;
33 t r a c k s −>appendTrack ( b e s t T r a c k ) ;
34 ma rkUsedC lu s t e r s ( b e s t T r a c k ) ;
35 }
36 }
37
38 Tracks * C l u s t e r s : : t r a c k P r o p a g a t i o n ( C l u s t e r * s t a r t i n g S e e d ) {



168 Appendix D. Code Examples from the Software Framework

39 / / P r op ag a t e t r a c k from a s i n g l e s t a r t i n g seed ( c l u s t e r )
40
41 Tracks * a l l P o s s i b l e T r a c k s F r omP a i r = new Tracks ( ) ;
42 Track * c u r r e n t T r a c k = new Track ( ) ;
43 Track * b e s t T r a c k = new Track ( ) ;
44
45 / / F ind a l l c l u s t e r s i n nex t l a y e r w i t h i n s e a r c h cone
46 C l u s t e r s * n e x t C l u s t e r s = f i n dN e a r e s t C l u s t e r s I nN e x t L a y e r ( s t a r t i n g S e e d

) ;
47
48 / / Try t o grow t r a c k from a l l d i f f e r e n t s t a r t i n g S e e d <−> n e x t C l u s t e r

p a i r s
49 f o r ( i n t i =0 ; i < n e x t C l u s t e r s −>G e t E n t r i e s F a s t ( ) ; i ++) {
50 n e x t C l u s t e r = n e x tC l u s t e r s −>At ( i ) ;
51 c u r r e n tT r a c k −>app endC l u s t e r ( s t a r t i n g S e e d ) ;
52 c u r r e n tT r a c k −>app endC l u s t e r ( n e x t C l u s t e r ) ;
53 growTrackFromLayer ( c u r r e n tT r a c k , n e x tC l u s t e r −>GetLayer ( ) ) ;
54
55 a l l P o s s i b l e T r a c k s F r omP a i r −>appendTrack ( c u r r e n t T r a c k ) ;
56 c u r r e n tT r a c k −>c l e a r T r a c k ( ) ;
57 }
58
59 / / Score : Track l e ng t h , ( i n v e r s e ) sum of a l l a n g u l a r changes ,
60 / / I s t h e r e a b ragg peak− l i k e s t r u c t u r e a t h e end .
61 r e t u r n f i n dT r a ckWi t hBe s t S co r e ( s e edT r a ck s ) ;
62 }
63
64 vo id * C l u s t e r s : : growTrackFromLayer ( Track * t r a c k , i n t f romLayer ) {
65 / / Grow t r a c k from a s t a r t i n g seed p a i r i n l a y e r s 0 and 1 ( o r 1 and

2) .
66 i n t l a s t H i t L a y e r = f romLayer ;
67
68 f o r ( i n t l a y e r = l a s t H i t L a y e r +1; l a y e r < g e t L a s tA c t i v eL a y e r ( ) +1 ; l a y e r

++) {
69 C l u s t e r * p r o j e c t e d P o i n t = t r a c k −>g e t E x t r a p o l a t i o nToL a y e r ( l a y e r )
70
71 / / F ind n e a r e s t n e i ghbou r i n nex t l a y e r
72 C l u s t e r * n e a r e s tNe i g h bou r = n u l l p t r ;
73 i n t l aye r I dxF rom = g e t F i r s t I n d e xO fL a y e r ( l a y e r +1) ;
74 i n t l a y e r I d xTo = ge tLa s t I n d exO fLaye r ( l a y e r +1) ;
75 f l o a t maxAngle = ge t S e a r c hRad i u sFo rLay e r ( l a y e r +1) *

MCSMu l t i p l i c a t i o nFa c t o r ;
76
77 f o r ( i n t i = l aye r I dxF rom ; i < l a y e r I d xTo ; i ++) {
78 f l o a t t h i sAng l e = diffmmXY ( p r o j e c t e d P o i n t , At ( i ) ) ;
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79 i f ( t h i sAng l e < maxAngle && ! At ( i )−>i sUsed ( ) ) {
80 n e a r e s tNe i g h bou r = At ( i ) ;
81 maxAngle = t h i sAng l e ;
82 }
83 }
84 i f ( n e a r e s tNe i g h bou r ) {
85 t r a c k −>app endC l u s t e r ( n e a r e s tN e i g h bou r ) ;
86 l a s t H i t L a y e r = ++ l a y e r +1;
87 }
88 } }
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