Cluster convolution for GATE

From pCT

In her MSc project, Silje Grimstad made a filtered library of the clusters from the summer beamtest in Heidelberg.

The result is ~15k Helium clusters stored as x/y arrays in a ROOT file included here.

x_mean y_mean size hit_array height width x_start y_start i_event combined
float float int list<int> int int int int int bool

A random sample of 9 clusters is shown below:

We want to convolute a GATE simulation with clusters from this library. For each hit in the MC data, we pick a random cluster from the library and draw it around the hit position. To do this, use the code at the bottom, with the following result:

Below is example code to perform the diffusion on-fly using a Hits container class with Hit objects (x,y,layer,edep,eventID). For more information about the implementation see GitHub.

<source lang="cpp">

  1. include <TTree.h>
  2. include <TFile.h>
  3. include <TRandom3.h>
  4. include <list>
  5. include <vector>

using namespace std;

void makeSortedClusterDatabase(); Hits * diffuseHits(TRandom3 * gRandom, Hits * singlePixelHits);

TTree * CDB_treeCluster; list<Int_t> * CDB_hit_array = 0; TBranch * CDB_b_hit_array; TTreeIndex * CDB_index; Int_t CDB_clusterSize; Double_t CDB_x_mean, CDB_y_mean; Int_t CDB_sortIndex[50]; TFile * CDB_fCluster;

void makeSortedClusterDatabase() {

  // From GlobalConstants/MaterialConstants.C / .h
  Int_t lastClusterSize = -1;
  CDB_fCluster = new TFile("Data/ClusterSizes/ALPIDE/database_final.root", "READ");
  CDB_treeCluster = (TTree*) CDB_fCluster->Get("database");
  CDB_treeCluster->SetBranchAddress("size", &CDB_clusterSize);
  CDB_treeCluster->SetBranchAddress("x_mean", &CDB_x_mean);
  CDB_treeCluster->SetBranchAddress("y_mean", &CDB_y_mean);
  CDB_treeCluster->SetBranchAddress("hit_array", &CDB_hit_array, &CDB_b_hit_array);
  // Sort clusters based on cluster size
  for (int i=0; i<50; i++) CDB_sortIndex[i] = -1;
  CDB_treeCluster->BuildIndex("size");
  CDB_index = (TTreeIndex*) CDB_treeCluster->GetTreeIndex();
  for (int i=0; i<CDB_index->GetN()-1; i++) {
     Long64_t local = CDB_treeCluster->LoadTree(CDB_index->GetIndex()[i]);
     CDB_treeCluster->GetEntry(local);
     if (lastClusterSize < 0 || lastClusterSize != CDB_clusterSize) {
        CDB_sortIndex[CDB_clusterSize] = i;
        lastClusterSize = CDB_clusterSize;
     }
  }

}

Hits * diffuseHits(TRandom3 *gRandom, Hits * singlePixelHits) {

  // From HelperTools/getTracks.C
  Int_t          nHits = singlePixelHits->GetEntriesFast();
  Hits         * diffusedHits = new Hits();
  Int_t          x, y, outX, outY, layer, cs, eventID, idx_x, binPos;
  Float_t        edep;
  Int_t          randomClusterIdx;
  for (Int_t h=0; h<nHits; h++) {
     x = singlePixelHits->getX(h);
     y = singlePixelHits->getY(h);
     layer = singlePixelHits->getLayer(h);
     edep = singlePixelHits->getEdep(h);
     eventID = singlePixelHits->getEventID(h);
     // The correspondence between CS and Edep [keV/um] is calculated from Ganesh's NIM A Proceedings article.
     cs = 4.2267 * pow(edep, 0.6500) + 0.5;
   
     // To keep any outliers within the tabulated clusters in the database
     if (cs<2) cs=2;
     if (cs>=27) cs=26;
     randomClusterIdx = gRandom->Integer(CDB_sortIndex[cs+1] - CDB_sortIndex[cs]) + CDB_sortIndex[cs];
     CDB_treeCluster->GetEntry(CDB_treeCluster->LoadTree(CDB_index->GetIndex()[randomClusterIdx]));
     idx_x = 0;
     Int_t thisCS = 0;
     for (Int_t n : *CDB_hit_array) {
        for (Int_t binPosPow = 0; binPosPow < 10; binPosPow++) {
           binPos = pow(2, binPosPow);
           if (binPos & n) {
              outX = x + (idx_x - CDB_x_mean) + 0.5;
              outY = y + (binPosPow - CDB_y_mean) + 0.5;
              diffusedHits->appendPoint(outX, outY, layer, eventID, edep/CDB_clusterSize); 
           }
        }
     idx_x++;
     }
  }
  return diffusedHits;

}

</source>